欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《多元函数微积分》习题解答第二章.doc

    • 资源ID:53945810       资源大小:378.51KB        全文页数:13页
    • 资源格式: DOC        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《多元函数微积分》习题解答第二章.doc

    习题2-1 1、解:在任意一个面积微元上的压力微元,所以,该平面薄片一侧所受的水压力2、解:在任意一个面积微元上的电荷微元,所以,该平面薄片的电荷总量3、解:因为,所以,又为单调递增函数,所以,由二重积分的保序性得4、解:积分区域D如图2-1-1所示,所以该物体的质量5、解:(1)积分区域如图2-1-2所示,所以(2)积分区域如图2-1-3所示,所以(3)积分区域如图2-1-4所示,所以(4)积分区域如图2-1-5所示,所以6、解:(1)积分区域如图2-1-6所示,所以(2)积分区域如图2-1-7所示,所以(3)积分区域如图2-1-8所示,所以(4)积分区域如图2-1-9所示,所以7、解:(1)积分区域如图2-1-10所示,令,所以,故 (2)积分区域如图2-1-11所示,令,所以,故 8、解:(1)积分区域如图2-1-12所示,令,所以,故 (2)积分区域如图2-1-13所示,令,所以,故 9、解:(1)积分区域如图2-1-14所示,故(2)积分区域如图2-1-15所示,令,所以,故(3)积分区域如图2-1-16所示, 故(4)积分区域如图2-1-17所示,令,所以,故10、解:积分区域如图2-1-18所示,由图形的对称性得:,所以图2-1-1 图2-1-2 图2-1-3 图2-1-4图2-1-5 图2-1-6 图2-1-7 图2-1-8 图2-1-9 图2-1-10 图2-1-11 图2-1-12图2-1-13 图2-1-14 图2-1-15 图2-1-16 图2-1-17 图2-1-18习题2-21、解:2、化三重积分为直角坐标中的累次积分解:(1)因为积分区域的上曲面为开口向上的旋转抛物面,下曲面为,积分区域在坐标面上的投影区域,所以(2)因为积分区域的上曲面为开口向下的抛物柱面与下曲面为开口向上的旋转抛物面围成,二曲面的交线在平面上的投影为圆,即,所以(3)因为积分区域的上曲面为开口向上的旋转抛物面,下曲面为,积分区域在坐标面上的投影区域,所以3、解:积分区域如图2-2-1所示另解:因为积分区域关于坐标面对称,又关于第一坐标是奇函数,所以。4、解:积分区域如图2-2-2所示,当时,过作平行与面的平面,与立体的截面为圆,因而的半径为,面积为,故5、求下列立体的体积解(1)曲面所围立体是球体与旋转抛物面的一部分(如图2-2-3所示),用柱面坐标计算:图2-2-1 图2-2-2 图2-2-3 (2)因为积分区域的上曲面为平面,下曲面为,积分区域在坐标面上的投影区域,所以6、利用柱面坐标计算下列三重积分解:(1)因为积分区域的上曲面为开口向上的上半球面,下曲面为开口向上的旋转抛物面,将代入得,解此方程得积分区域在坐标面上的投影区域,由柱坐标公式得:。(2)因为积分区域的上曲面为平面,下曲面为开口向上的旋转抛物面,将代入得,所以积分区域在坐标面上的投影区域,由柱坐标公式得:。7、利用球面坐标计算下列三重积分解:(1)用球面坐标计算(2)用球面坐标计算8、选用适当的坐标计算下列三重积分解:(1)积分区域为球,故用球面坐标计算:,所以(2)将代入得到平面上的一个圆,用直角坐标公式计算,由于计算量较大,请同学一试。用柱坐标计算(3)用柱坐标计算(4)用直角坐标计算习题2-31、 解:(1)因为连接点(1,0)和(2,1)的直线段的方程为,所以(2)(3)(4)因为星形线的参数方程为,所以(5)因为折线ABCD由线段AB,BC和CD构成,在线段AB上,在线的BC上,而在线段CD上,且(6)2、解:因为曲线L的极坐标方程为,所以,又 所以 3、解: 习题2-41、(1)解:将曲面向xoy平面投影,得投影区域Dxy:x2+y2R2,从而有(2) 解:将平面向XOY平面投影,得投影区域,,从而有积分(3)解:由 ()得 由 得 所以, 2、解:将被截得的平面向XOY平面投影,又有已知条件的,设所求的面积为A,则有3、解:将曲面向XOY平面投影,得投影区域,设所求的面积为A,则有4、解:以圆环的中心为坐标原点建立坐标系,则容易知道圆环薄片的面密度为:,设薄片的质量为M,则有5、,而习题2-51、 解:2、 解:设P(x,y)为三角形上一点,则容易知道此点的密度为。重心:3、 解:(1)由对称性知道重心一定在z轴上。而圆锥的体积为:。所以重心为:。(2)容易知道此几何体是两个同心半球之间的部分,且重心一定在z轴上。而重心:。4、 解:以圆柱下底面的圆心为坐标原点,以转动轴为z轴建立坐标系,设P(x,y,z)为圆柱体上一点,则此点到转动轴的距离为,因此5、 解:设P(x,y,z)为弹簧上一点,则P到Z轴的距离为,因此有6、 解:有对称性知道Fy=0。7、 解:由对称性知道Fx=Fy=0。

    注意事项

    本文(《多元函数微积分》习题解答第二章.doc)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开