《激素与代谢调控》PPT课件.ppt
激 素 与 代 谢 调 控药学院生化教研室药学院生化教研室 丁廷波丁廷波1.1.新陈代谢:包括消化、吸收、中间代谢、排泄四个阶段。新陈代谢:包括消化、吸收、中间代谢、排泄四个阶段。2.2.中间代谢:(吸收的物质和体内原有的)物质在体内化学中间代谢:(吸收的物质和体内原有的)物质在体内化学变化的过程。变化的过程。3.3.物质代谢:物质在体内的化学转变过程。物质代谢:物质在体内的化学转变过程。4.4.能量代谢:伴随物质代谢的能量转移过程。能量代谢:伴随物质代谢的能量转移过程。5.5.同化作用:外界营养物转变为自身物质的过程。同化作用:外界营养物转变为自身物质的过程。6.6.异化作用:自身物质转化为废物排出体外。异化作用:自身物质转化为废物排出体外。7.7.合成代谢:简单小分子合成为复杂大分子。合成代谢:简单小分子合成为复杂大分子。8.8.分解代谢:复杂大分子分解为分解代谢:复杂大分子分解为COCO2 2,H,H2 2OO和和NHNH3 3等。等。同化作用以合成代谢为主,但也包含分解代谢;异化作用同化作用以合成代谢为主,但也包含分解代谢;异化作用以分解代谢为主,但也包含合成代谢。以分解代谢为主,但也包含合成代谢。一、与物质代谢相关的概念二、物质代谢的特点1.1.整体性整体性2.2.代谢调节代谢调节3.3.各组织、器官物质代谢各具特色各组织、器官物质代谢各具特色4.4.各种代谢物均具有各自共同的代谢池各种代谢物均具有各自共同的代谢池是机体能量利用的共同形式是机体能量利用的共同形式是合成代谢所需的还原当量。是合成代谢所需的还原当量。三、物质代谢的相互联系一)在能量代谢上的相互联系1.三羧酸循环是三大营养物质分解代谢供能的共同通路。2.任意供能物质的代谢占优势,常能抑制和节约其他供能物质的降解。3.饱食、短期饥饿、长期饥饿状态下主要供能物质不同。二)糖、脂、和蛋白质、核酸代谢之间的相互联系。(物质代谢关联图)乙酰乙酰CoA丙酮酸丙酮酸3-磷酸甘油醛磷酸甘油醛(葡萄糖)葡萄糖)脂肪酸脂肪酸单糖单糖甘油甘油核苷酸核苷酸氨基酸氨基酸糖类糖类脂肪脂肪蛋白质蛋白质核酸核酸三羧酸循环三羧酸循环三羧酸循环三羧酸循环NADH+,FADH2电电子子传传递递链链氧氧化化磷磷酸酸化化NAD+,FADCO2H2OO2ADPATP分解合成分解合成糖类,脂类糖类,脂类糖类糖类氨基酸氨基酸四、代谢调节的三个层次一)细胞或酶水平的调节二)激素水平的代谢调节三)整体调节一)细胞或酶水平的调节细胞内酶并非均一分布,细胞内酶的隔离分布为细胞或酶水平代谢调节创造了条件。细胞或酶水平的调节有两种方式:1)酶活力的调节 快调节2)酶量的调节 慢调节酶活力的调节之变构调节变构调节酶活力调节的方式有两种:酶活力调节的方式有两种:1.1.变构(别构)调节变构(别构)调节某些物质结合于酶分子的变构(别构)中心,使酶某些物质结合于酶分子的变构(别构)中心,使酶分子构象发生改变,导致该酶活性中心构象改变,分子构象发生改变,导致该酶活性中心构象改变,从而调节酶活性,这种调节方式称为从而调节酶活性,这种调节方式称为变构(别构)变构(别构)调节调节。此类酶称为。此类酶称为变构(别构)酶变构(别构)酶。按这种方式。按这种方式调节酶活性的物质称为调节酶活性的物质称为变构(别构)效应剂变构(别构)效应剂。酶的变构调节举例酶的变构调节举例6-磷酸果糖1,6-二磷酸果糖6-磷酸果糖激酶-11,6-二磷酸果糖、2,6-二磷酸果糖、AMP、ADP+ATP、柠檬酸-乙酰CoA乙酰乙酰CoAHMGCoAMVAHMGCoA还原酶鲨烯胆固醇-酶活力调节之共价修饰调节共价修饰调节2.2.共价修饰调节共价修饰调节酶分子多肽链上的某些基团,在酶分子多肽链上的某些基团,在另一些酶另一些酶的催化下的催化下可逆地共价结合某些修饰基团,使酶的活力发生可逆地共价结合某些修饰基团,使酶的活力发生变化(激活或抑制),从而达到调节酶活力的作变化(激活或抑制),从而达到调节酶活力的作用,这种作用称为酶的用,这种作用称为酶的共价修饰调节共价修饰调节。可通过这。可通过这种方式调节活性的酶称为种方式调节活性的酶称为修饰酶修饰酶。修饰酶活性调节举例修饰酶活性调节举例激素(胰高血糖素、肾上腺素等)腺苷酸环化酶(无活性)腺苷酸环化酶(有活性)ATPcAMP蛋白激酶A(PKA)(无活性)蛋白激酶A(PKA)(有活性)糖原合成酶(有活性)糖原合成酶 P(无活性)磷酸化酶b激酶(无活性)磷酸化酶b激酶P(有活性)磷蛋白磷酸酶1磷蛋白磷酸酶1磷蛋白磷酸酶1磷酸化酶b(无活性)磷酸化酶a P(有活性)磷蛋白磷酸酶抑制剂(无活性)磷蛋白磷酸酶抑制剂P(有活性)+-酶量的调节对酶量的调节主要表现在对酶蛋白的合成和降解的调节。1.对酶蛋白合成的调节酶蛋白的合成是以基因水平为基础的调节。酶蛋白酶蛋白的合成是以基因水平为基础的调节。酶蛋白合成的诱导或阻遏是在基因表达的转录或翻译水合成的诱导或阻遏是在基因表达的转录或翻译水平发挥作用,以转录水平较常见。平发挥作用,以转录水平较常见。底物、激素或药物可诱导酶蛋白的合成。产物可阻底物、激素或药物可诱导酶蛋白的合成。产物可阻遏酶蛋白的合成。遏酶蛋白的合成。2.酶量调节对酶蛋白降解的调节1 1)溶酶体蛋白水解酶对酶蛋白的降解作用。)溶酶体蛋白水解酶对酶蛋白的降解作用。2 2)蛋白酶体对泛素化酶蛋白的降解作用。)蛋白酶体对泛素化酶蛋白的降解作用。泛素化降解系统l l胞浆蛋白的降解方式有多种,其中认识最为深刻的就是泛素化降解途径。泛素是仅由76个氨基酸残基组成的蛋白质,广泛存在于真核生物细胞中。其氨基酸序列高度保守。UbiquitinHuman Ub:MQIFVKTLTGKTITLEVEPNDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLADYNIQKESTLHLVLRLRGGYeast Ub:MQIFVKTLTGKTITLEVESSDTIDNVKSKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGGLys-48Gly-76蛋白质的泛素化修饰l l 泛素化(ubiquitination)是指在一系列酶作用下,一个或多个泛素分子与蛋白质共价结合。l l 蛋白质的泛素化过程至少需要三种酶分子的参与。即E1,E2,E3.UbiquitinationThe glycine residue of the ubiquitin C terminalE1:泛素激活酶E2:泛素结合酶E3:泛素蛋白质连接酶Formation of isopeptide bond between Glycine and Lysinel l细胞内仅有单一的E1基因。l lE2基因有多种。l lE3不仅与E2结合,还要识别特异的底物蛋白质。细胞内有许多不同的E3.E3 Ubiquitin Ligase:Ub-S-E2substrateE3UbUbUbUbl l多聚泛素分子(多于4个)修饰的蛋白质被蛋白酶体(proteasome)识别和降解。l l多聚泛素链通常是通过泛素分子的第48位赖氨酸(K-48)与下一个泛素分子羧基末端的甘氨酸形成酰胺键(异肽键,isopeptide bond)相连。Ubiquitin-mediated ProteolysisE1Ub-S-E3E2Ub-S-substratesUb Ub Ub Ub UbLys-48 C terminusProteasome19S lid19S lid20S coreThe Nobel Prize in Chemistry,2004“for the discovery of ubiquitin-mediated protein degradation”Avram HershkoIrwin RoseAaron Ciechanover二)激素水平的调节激素与靶细胞受体结合后,能将激素的信号,转化为一系列细胞内的化学反应,最终表现出激素的生物学效应。激素的定义激素是由内分泌腺以及具有内分泌功能的一些组织所产生的微量化学信息分子。它们被释放到细胞外,通过扩散或被血液转运到靶细胞或靶器官,从而调节细胞或器官的代谢,并有反馈性的调节机制以适应机体内环境的变化,也有协调体内各部分间相互联系的作用。激素的分类l l根据激素的作用距离分为:1)内分泌激素;2)旁分泌激素;3)自分泌激素l l根据激素的化学本质分为:1)氨基酸衍生物类激素;2)蛋白质多肽类激素;3)甾体类激素;4)脂肪酸衍生物类激素。l l根据激素的脂/水溶性分为:1)脂溶性激素;2)水溶性激素。l l根据激素受体在细胞部位的不同,激素分为:1)膜受体激素;2)胞内受体激素。激素作用的特性1)激素自我合成可调控性2)激素分泌的可调控性3)作用特异性4)作用的微量性5)作用通过中间介质6)作用的“快反应”和“慢反应”7)脱敏激素与受体结合的特性:1)结合的饱和性2)结合的高亲和性3)高度专一性4)结合的可逆性5)结合可产生强大的生物学效应6)体外重组受体的功能再现受体的类型l l根据受体在细胞中的位置,将其分为两大类。l l1.细胞膜受体l l2.细胞内受体细胞内受体及作用机制1 1)配体为)配体为疏水性疏水性激素,如类固醇激素,前列腺素,甲激素,如类固醇激素,前列腺素,甲状腺素,状腺素,1 1,25-25-(OHOH)2 2-vitD3,-vitD3,视黄酸。视黄酸。2 2)大多数胞内受体位于)大多数胞内受体位于细胞核内细胞核内,少数受体在,少数受体在胞液中胞液中与激素结合后再与激素结合后再进入核内进入核内与其核内特异受体结合。与其核内特异受体结合。3 3)激素与受体的结合改变了受体的构象,暴露出受体)激素与受体的结合改变了受体的构象,暴露出受体上的上的DNADNA结合区结合区,与,与DNADNA上的激素反应元件上的激素反应元件(HREHRE)结合,)结合,转录活性区转录活性区调节基因的表达。调节基因的表达。4 4)基因的表达调控有)基因的表达调控有初级反应初级反应和和延缓性次级反应延缓性次级反应。5 5)细胞内受体也可以发生磷酸化并参与转录启动复合)细胞内受体也可以发生磷酸化并参与转录启动复合体的激活。有些胞质受体结合配体后,可形成酶联体的激活。有些胞质受体结合配体后,可形成酶联激活反应传递信号产生特定生理效应。激活反应传递信号产生特定生理效应。细胞膜受体分类l l蛋白偶联受体l l2.离子通道受体l l3.具有内在酶活性的受体l l4.与酪氨酸蛋白激酶活性相关的受体G蛋白和G蛋白偶联受体GG蛋白:一般是指任何可与鸟苷酸结合的蛋白质的总蛋白:一般是指任何可与鸟苷酸结合的蛋白质的总称。称。它们的共同特征是:它们的共同特征是:1 1)由)由,等等3 3个不同的亚单位构成的异聚体。个不同的亚单位构成的异聚体。2 2)具有结合)具有结合GTPGTP或或GDPGDP的能力,并具有的能力,并具有GTPGTP酶酶活性,活性,能将与之结合的能将与之结合的GTPGTP分解形成分解形成GDPGDP。3 3)其本身的构象改变可进一步)其本身的构象改变可进一步激活(或抑制)效应激活(或抑制)效应蛋白蛋白,使后者活化。,使后者活化。对对GG蛋白激活后的精确反应,由特定的蛋白激活后的精确反应,由特定的,亚型亚型和下游靶分子的特殊亚型同时控制。和下游靶分子的特殊亚型同时控制。sGDP非活化型G蛋白活化型G蛋白GTPsG蛋白和G蛋白偶联受体l lGG蛋白偶联受体蛋白偶联受体(G protein linked receptors/guanine nucleotide G protein linked receptors/guanine nucleotide binding protein coupled receptors)binding protein coupled receptors)的共同特征:的共同特征:1 1)由一条多肽链组成,其中有)由一条多肽链组成,其中有7 7个跨膜疏水区域;个跨膜疏水区域;2 2)其氨基末端()其氨基末端(N N端)朝向细胞外,而羧基末端则端)朝向细胞外,而羧基末端则朝向细胞内基质。朝向细胞内基质。3 3)在氨基末端带有一些糖基化的位点,而在细胞内)在氨基末端带有一些糖基化的位点,而在细胞内基质的第三个袢和羧基末端各有一个在蛋白激酶基质的第三个袢和羧基末端各有一个在蛋白激酶催化下发生磷酸化的位点,这些位点与受体活性催化下发生磷酸化的位点,这些位点与受体活性调控有关。调控有关。NCG蛋白偶联区G蛋白偶联受体结构胞外胞浆离子通道受体l l共同特点:共同特点:1 1)由多个亚基组成受体)由多个亚基组成受体/离子通道复合体。离子通道复合体。2 2)除了有信号接受部位外,本身又是离子通道。)除了有信号接受部位外,本身又是离子通道。3 3)其跨膜信号转导无需中间步骤,反应快,一般只)其跨膜信号转导无需中间步骤,反应快,一般只需几毫秒。需几毫秒。l l离子通道受体分为两类:离子通道受体分为两类:1 1)配体门控离子通道)配体门控离子通道2 2)电压门控离子通道)电压门控离子通道具有内在酶活性的受体特点:本身是一种具有跨膜结构的酶蛋白。其胞外域与配体结合而被激活,通过胞内侧酶活性反应将胞外信号传至细胞内。l l1)酪氨酸受体激酶(TPKs)l l2)丝氨酸/苏氨酸受体激酶l l3)受体鸟苷酸环化酶系统l l4)受体一氧化氮系统富含Cys区段免疫球蛋白样序列激酶插入序列TPKIGF-受体EGF受体PDGF受体FGF受体EGF:表皮生长因子IGF-:胰岛素样生长因子-PDGF:血小板衍生生长因子FGF:成纤维细胞生长因子与酪氨酸蛋白激酶活性相关的受体受体本身没有酶活性,在配体结合后征集和激活细胞浆酪氨酸蛋白激酶。1)细胞因子受体2)抗原受体TPKPPPPPPPPPPPPTPKAdaptor protein细胞膜受体作用机制膜受体介导的信息传递至少存在 5 条途径。这 5 条途径既相对独立又存在一定联系。一)cAMP-蛋白激酶途径二)Ca2+依赖性蛋白激酶途径三)cGMP蛋白激酶途径四)酪氨酸蛋白激酶途径五)核因子B途径cAMP-蛋白激酶途径该途径以靶细胞内该途径以靶细胞内cAMPcAMP浓度改变和激活蛋白激酶浓度改变和激活蛋白激酶A(PKAA(PKA)为主要特征。是激素调节物质代谢的主要途径。为主要特征。是激素调节物质代谢的主要途径。的合成与分解的合成与分解胰高血糖素、肾上腺素等激素与其受体(胰高血糖素、肾上腺素等激素与其受体(GG蛋白偶联受体蛋白偶联受体)结合而激活受体。活化的受体可促使结合而激活受体。活化的受体可促使GsGs的的GDPGDP与与GTPGTP交交换,导致换,导致GsGs的的 亚基与亚基与解离,解离,GG蛋白蛋白释放出释放出s-GTPs-GTP。s-GTPs-GTP激活腺苷酸环化酶(激活腺苷酸环化酶(ACAC),催化,催化ATPATP转化为转化为cAMPcAMP。复合体也可以独立地作用于相应的效应物,与复合体也可以独立地作用于相应的效应物,与 亚基拮抗。亚基拮抗。cAMP cAMP 可被磷酸二酯酶(可被磷酸二酯酶(PDEPDE)降解为)降解为5-AMP5-AMP而失活。而失活。少数激素如生长激素抑制素、胰岛素和抗血管紧张素等,它少数激素如生长激素抑制素、胰岛素和抗血管紧张素等,它们活化受体后可催化抑制性们活化受体后可催化抑制性GG蛋白解离,导致细胞内蛋白解离,导致细胞内ACAC活活性下降,从而降低细胞内性下降,从而降低细胞内cAMPcAMP水平。水平。receptorhormonesGDPGTPsGTP(AC)iAC+ATPcAMP(AC)iAC无活性AC有活性AC的作用机制cAMPcAMP通过激活蛋白激酶通过激活蛋白激酶A A(PKAPKA)系统发挥生理作)系统发挥生理作用。用。PKAPKA是一种由四聚体(是一种由四聚体(C2R2C2R2)组成的别构酶。每个)组成的别构酶。每个调节亚基(调节亚基(R R)有)有2 2个个cAMPcAMP结合位点,催化亚基结合位点,催化亚基具有催化底物蛋白质某些特定丝具有催化底物蛋白质某些特定丝/苏氨酸残基磷酸苏氨酸残基磷酸化的功能。调节亚基与催化亚基相结合时,化的功能。调节亚基与催化亚基相结合时,PKAPKA呈无活性状态。当呈无活性状态。当4 4分子分子cAMPcAMP与与2 2个调节亚基结个调节亚基结合后,调节亚基脱落,游离的催化亚基具有蛋白合后,调节亚基脱落,游离的催化亚基具有蛋白激酶活性。激酶活性。PKAPKA的激活过程需要的激活过程需要MgMg2+2+.CC+4cAMPCCRR+RRcAMPcAMPcAMPcAMP无活无活性性PKA有活有活性性PKA丝氨酸Serine酪氨酸Tyrosine苏氨酸ThreonineTPK使底物蛋白上酪氨酸残基的 OH 基磷酸化PKA,PKC,PKG,Ca2+-CaM激酶使底物蛋白上丝氨酸或苏氨酸残基的 OH 基磷酸化的作用1 1)对代谢的调节作用)对代谢的调节作用2 2)对基因表达的调节作用)对基因表达的调节作用PKAPKA的催化亚基进入细胞核后,可催化反式作用因的催化亚基进入细胞核后,可催化反式作用因子子CREBCREB(cAMP response element binding cAMP response element binding proteinprotein)磷酸化,磷酸化的)磷酸化,磷酸化的CREBCREB形成同源二聚形成同源二聚体,与体,与DNADNA上的上的CRECRE(cAMP response element(cAMP response element)结合,从而激活受)结合,从而激活受CRECRE调控的基因调控的基因转录。转录。3 3)PKAPKA还可以使细胞核内的组蛋白、酸性蛋白以及还可以使细胞核内的组蛋白、酸性蛋白以及胞浆内的核蛋白体蛋白、膜蛋白、微管蛋白及受胞浆内的核蛋白体蛋白、膜蛋白、微管蛋白及受体蛋白等磷酸化,从而影响这些蛋白质的功能。体蛋白等磷酸化,从而影响这些蛋白质的功能。PKAPKA的激活及作用举例的激活及作用举例激素(胰高血糖素、肾上腺素等)腺苷酸环化酶(无活性)腺苷酸环化酶(有活性)ATPcAMP蛋白激酶A(PKA)(无活性)蛋白激酶A(PKA)(有活性)糖原合成酶(有活性)糖原合成酶 P(无活性)磷酸化酶b激酶(无活性)磷酸化酶b激酶P(有活性)磷蛋白磷酸酶1磷蛋白磷酸酶1磷蛋白磷酸酶1磷酸化酶b(无活性)磷酸化酶a P(有活性)磷蛋白磷酸酶抑制剂(无活性)磷蛋白磷酸酶抑制剂P(有活性)+-Ca2+-依赖性蛋白激酶途径l l在收缩、运动、分泌和分裂等复杂的生命活动中,需要Ca2+参与调节。根据Ca2+的作用特点,分成两大类:l l1.Ca2+-磷脂依赖性蛋白激酶途径l l2.Ca2+-钙调蛋白依赖性蛋白激酶途径(Ca2+-CaM激酶途径)Ca2+-磷脂依赖性蛋白激酶途径1)IP3和DAG的生物合成促甲状腺释放激素、去甲肾上腺素和抗利尿激素等作用于靶细胞膜上特异性受体(G蛋白偶联受体)后,通过特定的G蛋白(Gp)激活磷脂酰肌醇特异性磷脂酶C(PI-PLC),PI-PLC则分解膜成分-磷脂酰肌醇4,5-二磷酸(PIP2)而生成DAG和IP3。receptorhormonePGDPGTPPGTPPI-PLCPIPLC+PIP2DAG+IP3PI-PLCPIPLC无活性PI-PLC有活性PI-PLCPI-PLCPIP2IP3DAG2)DAG和IP3的功能DAG生成后仍留在质膜上,在磷脂酰丝氨酸和CaCa2+2+的配合下激活蛋白激酶C。IP3生成后,从膜上扩散到胞浆中与内质网和肌浆网上的受体结合,促进这些钙储库内的CaCa2+2+迅速释放,使胞浆内的CaCa2+2+浓度升高。3)PKC的功能对代谢的调节作用PKC被激活后可引起一系列靶蛋白的丝氨酸和(或)苏氨酸残基发生磷酸化反应。靶蛋白包括质膜受体、膜蛋白和多种酶。从而启动一系列生理、生化反应。如:PKC能催化质膜的CaCa2+2+通道磷酸化,促进CaCa2+2+流入胞内;PKC也能催化肌浆网的CaCa2+2+-ATP酶磷酸化,促进钙进入肌浆网。这样,在胞浆内的CaCa2+2+浓度处于动态平衡。丝氨酸Serine酪氨酸Tyrosine苏氨酸ThreoninePKA,PKC,PKG,Ca2+-CaM激酶使底物蛋白上丝氨酸或苏氨酸残基的 OH 基磷酸化TPK使底物蛋白上酪氨酸残基的 OH 基磷酸化对基因表达的调节作用PKC对基因的活化过程分为早期反应和晚期反应两个阶段。PKC能使立早基因(immediate-early gene)的反式作用因子磷酸化,加速立早基因的表达。如c-fos,AP1/jun等原癌基因。立早基因的表达产物寿命短暂,受磷酸化修饰后跨越核膜,活化晚期反应基因,并导致细胞增生或核型变化。3)PKC的功能信号signalPKCC-fos基因AP1/c-jun基因mRNAmRNAC-fos蛋白蛋白AP1/c-jun蛋白蛋白PKCPKCAP1/c-jun蛋白蛋白C-fos蛋白蛋白PPC-fos蛋白蛋白PAP1/c-jun蛋白蛋白PP早期反应晚期反应转录激活PKC对基因的早期活化和晚期活化Ca2+-钙调蛋白依赖性蛋白激酶途径钙调蛋白(钙调蛋白(CaMCaM)为钙结合蛋白,当胞浆的为钙结合蛋白,当胞浆的CaCa2+2+浓度浓度 1010-2-2 mmol/Lmmol/L时,时,CaCa2+2+与与CaMCaM结合,其构象改变而结合,其构象改变而激活激活CaCa2+2+-CaM-CaM激酶激酶(或其他酶,如(或其他酶,如NONO合酶)。合酶)。CaCa2+2+-CaM-CaM激酶的底物谱非常广,可以磷酸化许多蛋激酶的底物谱非常广,可以磷酸化许多蛋白质的丝氨酸和(或)苏氨酸残基,使之激活或白质的丝氨酸和(或)苏氨酸残基,使之激活或失活。失活。如:如:CaCa2+2+-CaM-CaM激酶既能激活腺苷酸环化酶,又能激激酶既能激活腺苷酸环化酶,又能激活磷酸二酯酶,从而调节细胞内活磷酸二酯酶,从而调节细胞内cAMPcAMP的浓度。的浓度。CaCa2+2+-CaM-CaM激酶也可以激活胰岛素受体的酪氨酸蛋白激酶也可以激活胰岛素受体的酪氨酸蛋白激酶活性。还可以调节激酶活性。还可以调节PKAPKA活性。活性。Ca2+Ca2+CaMCa2+-CaMCa2+-CaM激酶无活性Ca2+-CaM激酶有活性NO合酶无活性NO合酶有活性P精氨酸NO瓜氨酸+Ca2+-CaM的作用PKA,PKC,PKG,Ca2+-CaM激酶激酶使底物蛋白上丝氨酸或苏氨酸残基的 OH 基磷酸化cGMPcGMP蛋白激酶途径蛋白激酶途径cGMPcGMP由鸟苷酸环化酶(由鸟苷酸环化酶(guanylate cyclase,GC)guanylate cyclase,GC)催化催化GTPGTP环化而生成,经磷酸二酯酶催化而降解。环化而生成,经磷酸二酯酶催化而降解。大部分大部分GCGC为可溶性酶,部分受体本身就具有为可溶性酶,部分受体本身就具有GCGC的活的活性。性。可溶性可溶性GCGC的激活过程和的激活过程和ACAC不同,不同,GCGC的激活间接地依的激活间接地依赖赖CaCa2+2+。CaCa2+2+通过激活磷脂酶通过激活磷脂酶 C C和磷脂酶和磷脂酶A A2 2使膜磷使膜磷脂水解生成花生四烯酸,花生四烯酸经氧化生成前脂水解生成花生四烯酸,花生四烯酸经氧化生成前列腺素而激活列腺素而激活GCGC。CaCa2+2+也可以通过也可以通过CaCa2+2+-钙调蛋白钙调蛋白激活激活NONO合酶,生成合酶,生成NONO后激活后激活GCGC。cGMPcGMP能激活能激活cGMPcGMP依赖性蛋白激酶(依赖性蛋白激酶(cGMPcGMP蛋白激酶,蛋白激酶,蛋白激酶蛋白激酶G)G),PKGPKG催化有关蛋白质或有关酶类的丝催化有关蛋白质或有关酶类的丝/苏氨酸残基磷酸化,产生生物学效应。苏氨酸残基磷酸化,产生生物学效应。PKGPKG的结构与蛋白激酶的结构与蛋白激酶A A完全不同,它为一单体酶,完全不同,它为一单体酶,分子中有一个分子中有一个cGMPcGMP结合位点。结合位点。受体本身就具有GC酶活性Ca2+磷脂酶C磷脂酶A2活化花生四烯酸氧化前列腺素激活可溶性GCCa2+-CaM活化NO合酶精氨酸NO激活鸟苷酸环化酶(GC)的激活过程GTPGCcGMP蛋白激酶G蛋白激酶GcGMP无活性无活性有活性有活性底物蛋白底物蛋白PPKA,PKC,PKG,Ca2+-CaM激酶使底物蛋白上丝氨酸或苏氨酸残基的 OH 基磷酸化PKG的激活及作用酪氨酸蛋白激酶途径1)酪氨酸蛋白激酶的两种类型酪氨酸蛋白激酶(tyrosine-protein kinase,TPK)包括两大类,第一类位于细胞质膜上称为受体型TPK;第二类位于胞浆中,称为非受体型TPK,它们常与非催化型受体偶联而发挥作用。2)受体胞浆侧酪氨酸残基的磷酸化当配体与受体型TPK(单链跨膜蛋白)结合后,受体大多发生二聚化,二聚体的TPK被激活,彼此可使对方的某些酪氨酸残基磷酸化,这一过程称为自身磷酸化。非催化型受体的某些酪氨酸残基则被非受体型TPK磷酸化。PPPPPP3 3)效应蛋白与受体的偶联)效应蛋白与受体的偶联细胞内存在一些连接物蛋白(adaptor protein),它们具有SH2结构域。(src homology 2 domain),这些结构域与原癌基因src编码的酪氨酸蛋白激酶区同源。SH2结构域能识别磷酸化的酪氨酸残基并与之结合。磷酸化的受体通过连接物蛋白可偶联其他效应蛋白。这些效应蛋白本身具有酶活性,故可逐级传递信息并将效应级联放大。PPPPPP酶Adaptor protein受体型TPK的信息传递途径-受体型受体型TPK-Ras-MAPKTPK-Ras-MAPK途径途径催化型受体与配体结合后,发生自身磷酸化并磷酸化催化型受体与配体结合后,发生自身磷酸化并磷酸化中介分子中介分子-Grb-Grb2 2和和SOSSOS,使其活化,进而激活使其活化,进而激活RasRas蛋白。由于蛋白。由于rasras蛋白为多种生长因子信息传递过蛋白为多种生长因子信息传递过程所共有,因此又称为程所共有,因此又称为RasRas通路。通路。活化的活化的rasras蛋白可进一步活化蛋白可进一步活化RafRaf蛋白。蛋白。RafRaf蛋白具有丝蛋白具有丝氨酸氨酸/苏氨酸蛋白激酶活性,它可激活有丝分裂原激苏氨酸蛋白激酶活性,它可激活有丝分裂原激活蛋白激酶(活蛋白激酶(mitogen-activated protein kinase,mitogen-activated protein kinase,MAPK)MAPK)系统,发挥生理活性。系统,发挥生理活性。受体型受体型 TPK TPK活化后还可通过激活腺苷酸环化酶、多种活化后还可通过激活腺苷酸环化酶、多种磷脂酶(如磷脂酶(如PI-PLCPI-PLC、磷脂酶、磷脂酶A A和鞘磷脂酶)等发挥和鞘磷脂酶)等发挥调控基因表达的作用。调控基因表达的作用。PPPPPP细胞外信号EGF,PDGF等Grb2SOSGrb2SOSPPRasGDPRasGTPraf Praf MAPKKKMAPKKKPMAPKKMAPKKPMAPKMAPKP反式作用因子反式作用因子 P激活转录.受体型TPK激活基因表达的途径受体型TPK-Ras-MAPK途径PPPPPP腺苷酸环化酶AC激活磷脂酶C激活PIP2IP3+DAGcAMPPKA活化Ca2+-CaM依赖性蛋白激酶活化PKC活化修饰转录因子和调节因子快速反应原癌基因激活细胞核受体型TPK激活基因表达的途径受体型TPK-各种酶激活途径Ras蛋白RasRas蛋白是由一条多肽链组成的单体蛋白,由原癌蛋白是由一条多肽链组成的单体蛋白,由原癌基因基因rasras编码而得名。编码而得名。它的活性与其结合它的活性与其结合GTP GTP 或或GDPGDP有关。有关。RasRas结合结合GDPGDP时没有活性,但磷酸化时没有活性,但磷酸化的的SOSSOS可促进可促进GDPGDP从从RasRas脱落,使脱落,使ras ras 变成变成GTPGTP结合状态而活化。结合状态而活化。RasRas蛋白的分子量为蛋白的分子量为21kD21kD,故又名,故又名p21p21蛋白。因其蛋白。因其分子量小于与七个跨膜螺旋受体偶联的分子量小于与七个跨膜螺旋受体偶联的GG蛋白,蛋白,也被称作为小也被称作为小GG蛋白。蛋白。MAPK系统的作用MAPKMAPK系统包括系统包括MAPKMAPK,MAPKK MAPKK,MAPKKKMAPKKK。MAPKMAPK具有广泛的催化活性,它除调节花生四烯具有广泛的催化活性,它除调节花生四烯酸的代谢和细胞微管形成以外,更重要的是可催酸的代谢和细胞微管形成以外,更重要的是可催化细胞核内许多反式作用因子(如转录因子)的化细胞核内许多反式作用因子(如转录因子)的Ser/ThrSer/Thr残基磷酸化,导致基因转录或关闭。残基磷酸化,导致基因转录或关闭。非受体型非受体型TPKTPK的信息传递途径的信息传递途径-JAKs-STATJAKs-STAT途径途径一部分生长因子、大部分细胞因子和激素等的受体分子缺乏一部分生长因子、大部分细胞因子和激素等的受体分子缺乏酪氨酸蛋白激酶活性,但它们能借助细胞内的一类具有激酪氨酸蛋白激酶活性,但它们能借助细胞内的一类具有激酶结构的连接蛋白酶结构的连接蛋白JAKs(janus Kinase)JAKs(janus Kinase)完成信息转导。完成信息转导。JAKsJAKs家族成员包括家族成员包括JAK1JAK1、JAK2 JAK2、TYK2TYK2和和JAK3JAK3,分子内均,分子内均有有SHSH2 2结构域。配体与非催化型受体结合后,能活化各自结构域。配体与非催化型受体结合后,能活化各自的的JAKs.JAKs.JAKsJAKs再通过激活信号转导子和转录激动子(再通过激活信号转导子和转录激动子(signal signal transductors and activator of transcription,STAT)transductors and activator of transcription,STAT)而最终而最终影响到基因的转录调节。影响到基因的转录调节。在在JAKs-STATJAKs-STAT通路中,激活后的受体可与不同的通路中,激活后的受体可与不同的JAKsJAKs和不同和不同的的STATSTAT相结合,因此该途径传递信号更具有多样性和灵相结合,因此该途径传递信号更具有多样性和灵活性。活性。PPPPPPJAK1138491非活化的STAT单体1138491PPP磷酸化的STAT复合物481138491PPP48干扰素应答元件核膜干扰素JAKs-STAT途径核因子B途径核因子核因子BB(nuclear factor-Bnuclear factor-B,NF-B)NF-B)途径体系主要涉及机体防御反途径体系主要涉及机体防御反应、组织损伤和应激、细胞分化和凋亡以及肿瘤生长抑制过程的信息应、组织损伤和应激、细胞分化和凋亡以及肿瘤生长抑制过程的信息传递。传递。NF-BNF-B包括包括 NF-B1,NF-B2 NF-B1,NF-B2和某些癌基因蛋白(如和某些癌基因蛋白(如Rel A)Rel A)等。等。在多数细胞类型,在多数细胞类型,NF-B NF-B在胞浆内与抑制性蛋白质(包括在胞浆内与抑制性蛋白质(包括IBIB、IBIB、Bcl-3Bcl-3等)结合形成无活性的复合物。等)结合形成无活性的复合物。当肿瘤坏死因子(当肿瘤坏死因子(TNFTNF)等作用于相应受体后,可通过第二信使)等作用于相应受体后,可通过第二信使CerCer等激等激活此系统。病毒感染、脂多糖、活性氧中间体、佛波酯、双链活此系统。病毒感染、脂多糖、活性氧中间体、佛波酯、双链RNARNA以以及前述信息传递途径中活化的及前述信息传递途径中活化的PKCPKC,PKAPKA等则可直接激活等则可直接激活NF-BNF-B系统。系统。激活过程是通过磷酸化抑制性蛋白使其构象发生改变而从激活过程是通过磷酸化抑制性蛋白使其构象发生改变而从NF-BNF-B脱落,脱落,NF-BNF-B得以活化。得以活化。活化的活化的NF-BNF-B进入细胞核,形成环状结构与进入细胞核,形成环状结构与DNADNA接触,启动或抑制有关接触,启动或抑制有关基因的转录。基因的转录。Cer及其激酶体系PKCPKA途径等IBIBPNF-B无活性形式NF-B有活性形式移入细胞核激活基因转录将被泛素化降解NF-B激活过程