欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学解题方法大全.doc

    • 资源ID:54435054       资源大小:137KB        全文页数:35页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学解题方法大全.doc

    第一章 高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。配方法使用的最基本的配方依据是二项完全平方公式(ab) a 2abb ,将这个公式灵活运用,可得到各种基本配方形式,如:a2 b2(ab)2 2ab(ab)2 2ab;a2 abb2 (ab)2 ab(ab)2 3ab;a2 b2 c2 abbcca (ab)2 (bc) 2(ca) 2a 2b 2c 2(abc) 22(abbcca)(abc)2 2(abbcca)结合其它数学知识和性质,相应有另外的一些配方形式,如:1sin212sincos(sincos) ;x (x ) 2(x ) 2 ; 等等。、再现性题组:1. 在正项等比数列a 中,a ?a +2a ?a +a ?a =25,则 a a _。2. 方程x y 4kx2y5k0表示圆的充要条件是_。 A. <k<1 B. k< 或k>1 C. kR D. k 或k13. 已知sin cos 1,则sincos的值为_。 A. 1 B. 1 C. 1或1 D. 04. 函数ylog (2x 5x3)的单调递增区间是_。 A. (, B. ,+) C. ( , D. ,3)5. 已知方程x +(a-2)x+a-1=0的两根x 、x ,则点P(x ,x )在圆x +y =4上,则实数a_。【简解】 1小题:利用等比数列性质a a a ,将已知等式左边后配方(a a ) 易求。答案是:5。 2小题:配方成圆的标准方程形式(xa) (yb) r ,解r >0即可,选B。 3小题:已知等式经配方成(sin cos ) 2sin cos 1,求出sincos,然后求出所求式的平方值,再开方求解。选C。4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。5小题:答案3 。、示范性题组:例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_。 A. 2 B. C. 5 D. 6【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z,则 ,而欲求对角线长 ,将其配凑成两已知式的组合形式可得。【解】设长方体长宽高分别为x,y,z,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得: 。长方体所求对角线长为: 5所以选B。【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。例2. 设方程x kx2=0的两实根为p、q,若( ) +( ) 7成立,求实数k的取值范围。【解】方程x kx2=0的两实根为p、q,由韦达定理得:pqk,pq2 ,( ) +( ) 7, 解得k 或k 。又 p、q为方程x kx2=0的两实根, k 80即k2 或k2 综合起来,k的取值范围是: k 或者 k 。【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到pq、pq后,观察已知不等式,从其结构特征联想到先通分后配方,表示成pq与pq的组合式。假如本题不对“”讨论,结果将出错,即使有些题目可能结果相同,去掉对“”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。例3. 设非零复数a、b满足a abb =0,求( ) ( ) 。【分析】 对已知式可以联想:变形为( ) ( )10,则 (为1的立方虚根);或配方为(ab) ab 。则代入所求式即得。【解】由a abb =0变形得:( ) ( )10 ,设 ,则 10,可知为1的立方虚根,所以: , 1。又由a abb =0变形得:(ab) ab ,所以 ( ) ( ) ( ) ( ) ( ) ( ) 2 。【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用的性质,计算表达式中的高次幂。一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。【另解】由a abb 0变形得:( ) ( )10 ,解出 后,化成三角形式,代入所求表达式的变形式( ) ( ) 后,完成后面的运算。此方法用于只是未 联想到时进行解题。假如本题没有想到以上一系列变换过程时,还可由a abb 0解出:a b,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。、巩固性题组:1.函数y(xa) (xb) (a、b为常数)的最小值为_。A. 8 B. C. D.最小值不存在2.、是方程x 2axa60的两实根,则(-1) +(-1) 的最小值是_。A. B. 8 C. 18 D.不存在3.已知x、yR ,且满足x3y10,则函数t2 8 有_。A.最大值2 B.最大值 C.最小值2 B.最小值 4.椭圆x 2ax3y a 60的一个焦点在直线xy40上,则a_。A. 2 B. 6 C. 2或6 D. 2或65.化简:2 的结果是_。A. 2sin4 B. 2sin44cos4 C. 2sin4 D. 4cos42sin4 6. 设F 和F 为双曲线 y 1的两个焦点,点P在双曲线上且满足F PF 90°,则F PF 的面积是_。7. 若x>1,则f(x)x 2x 的最小值为_。8. 已知 < ,cos(-) ,sin(+) ,求sin2的值。(92年高考题)9. 设二次函数f(x)Ax BxC,给定m、n(m<n),且满足A (m+n) + m n 2AB(m+n)CmnB C 0 。 解不等式f(x)>0; 是否存在一个实数t,使当t(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t的取值范围。10. 设s>1,t>1,mR,xlog tlog s,ylog tlog sm(log tlog s),将y表示为x的函数yf(x),并求出f(x)的定义域;若关于x的方程f(x)0有且仅有一个实根,求m的取值范围。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4 2 20,先变形为设2 t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y 的值域时,易发现x0,1,设xsin ,0, ,问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x y r (r>0)时,则可作三角代换xrcos、yrsin化为三角问题。均值换元,如遇到xyS形式时,设x t,y t等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和0, 。、再现性题组:1.ysinx?cosxsinx+cosx的最大值是_。2.设f(x 1)log (4x ) (a>1),则f(x)的值域是_。3.已知数列a 中,a 1,a ?a a a ,则数列通项a _。4.设实数x、y满足x 2xy10,则xy的取值范围是_。5.方程 3的解是_。6.不等式log (2 1) ?log (2 2)2的解集是_。【简解】1小题:设sinx+cosxt , ,则y t ,对称轴t1,当t ,y ;2小题:设x 1t (t1),则f(t)log -(t-1) 4,所以值域为(,log 4;3小题:已知变形为 1,设b ,则b 1,b 1(n1)(-1)n,所以a ;4小题:设xyk,则x 2kx10, 4k 40,所以k1或k1;5小题:设3 y,则3y 2y10,解得y ,所以x1;6小题:设log (2 1)y,则y(y1)<2,解得2<y<1,所以x(log ,log 3)。、示范性题组:例1. 实数x、y满足4x 5xy4y 5 ( 式) ,设Sx y ,求 的值。(93年全国高中数学联赛题)【分析】 由Sx y 联想到cos sin 1,于是进行三角换元,设 代入式求S 和S 的值。【解】设 代入式得: 4S5S? sincos5 解得 S ; -1sin21 385sin213 此种解法后面求S最大值和最小值,还可由sin2 的有界性而求,即解不等式:| |1。这种方法是求函数值域时经常用到的“有界法”。【另解】 由Sx y ,设x t,y t,t , , 则xy± 代入式得:4S±5 =5, 移项平方整理得 100t +39S 160S1000 。 39S 160S1000 解得: S 【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件Sx y 与三角公式cos sin 1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。第二种解法属于“均值换元法”,主要是由等式Sx y 而按照均值换元的思路,设x t、y t,减少了元的个数,问题且容易求解。另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法。和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x、y时,可以设xab,yab,这称为“和差换元法”,换元后有可能简化代数式。本题设xab,yab,代入式整理得3a 13b 5 ,求得a 0, ,所以S(ab) (ab) 2(a b ) a , ,再求 的值。例2 ABC的三个内角A、B、C满足:AC2B, ,求cos 的值。(96年全国理)【分析】 由已知“AC2B”和“三角形内角和等于180°”的性质,可得 ;由“AC120°”进行均值换元,则设 ,再代入可求cos即cos 。【解】由ABC中已知AC2B,可得 ,由AC120°,设 ,代入已知等式得: 2 ,解得:cos , 即:cos 。【另解】由AC2B,得AC120°,B60°。所以 2 ,设 m, m ,所以cosA ,cosC ,两式分别相加、相减得:cosAcosC2cos cos cos ,cosAcosC2sin sin sin ,即:sin , ,代入sin cos 1整理得:3m 16m120,解出m 6,代入cos 。【注】 本题两种解法由“AC120°”、“ 2 ”分别进行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。假如未想到进行均值换元,也可由三角运算直接解出:由AC2B,得AC120°,B60°。所以 2 ,即cosAcosC2 cosAcosC,和积互化得:2cos cos cos(A+C)cos(A-C),即cos cos(A-C) (2cos 1),整理得:4 cos 2cos 3 0,例3. 设a>0,求f(x)2a(sinxcosx)sinx?cosx2a 的最大值和最小值。【解】 设sinxcosxt,则t- , ,由(sinxcosx) 12sinx?cosx得:sinx?cosx f(x)g(t) (t2a) (a>0),t- , t- 时,取最小值:2a 2 a 当2a 时,t ,取最大值:2a 2 a ;当0<2a 时,t2a,取最大值: 。 f(x)的最小值为2a 2 a ,最大值为 。【注】 此题属于局部换元法,设sinxcosxt后,抓住sinxcosx与sinx?cosx的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。换元过程中一定要注意新的参数的范围(t- , )与sinxcosx对应,否则将会出错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。一般地,在遇到题目已知和未知中含有sinx与cosx的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。例4. 设对所于有实数x,不等式x log 2x log log >0恒成立,求a的取值范围。(87年全国理)【分析】不等式中log 、 log 、log 三项有何联系?进行对数式的有关变形后不难发现,再实施换元法。【解】 设log t,则log log 3log 3log 3t,log 2log 2t,代入后原不等式简化为(3t)x 2tx2t>0,它对一切实数x恒成立,所以: ,解得 t<0即log <00< <1,解得0<a<1。【注】应用局部换元法,起到了化繁为简、化难为易的作用。为什么会想到换元及如何设元,关键是发现已知不等式中log 、 log 、log 三项之间的联系。在解决不等式恒成立问题时,使用了“判别式法”。另外,本题还要求对数运算十分熟练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。例5. 已知 ,且 (式),求 的值。【解】 设 k,则sinkx,cosky,且sin cos k (x +y )1,代入式得: 即: 设 t,则t , 解得:t3或 ± 或± 【另解】 由 tg,将等式两边同时除以 ,再表示成含tg的式子:1tg tg ,设tg t,则3t 10t30,t3或 , 解得 ± 或± 。【注】 第一种解法由 而进行等量代换,进行换元,减少了变量的个数。第二种解法将已知变形为 ,不难发现进行结果为tg,再进行换元和变形。两种解法要求代数变形比较熟练。在解高次方程时,都使用了换元法使方程次数降低。例6. 实数x、y满足 1,若xyk>0恒成立,求k的范围。【分析】由已知条件 1,可以发现它与a b 1有相似之处,于是实施三角换元。【解】由 1,设 cos, sin,即: 代入不等式xyk>0得:3cos4sink>0,即k<3cos4sin5sin(+) 所以k<-5时不等式恒成立。【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围。一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”。本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标系,不等式axbyc>0 (a>0)所表示的区域为直线axbyc0所分平面成两部分中含x轴正方向的一部分。此题不等式恒成立问题化为图形问题:椭圆上的点始终位于平面上xyk>0的区域。即当直线xyk0在与椭圆下部相切的切线之下时。当直线与椭圆相切时,方程组 有相等的一组实数解,消元后由0可求得k3,所以k<-3时原不等式恒成立。、巩固性题组:1.已知f(x )lgx (x>0),则f(4)的值为_。A. 2lg2 B. lg2 C. lg2 D. lg42.函数y(x1) 2的单调增区间是_。A. -2,+) B. -1,+) D. (-,+) C. (-,-13.设等差数列a 的公差d ,且S 145,则a a a a 的值为_。A. 85 B. 72.5 C. 60 D. 52.54.已知x 4y 4x,则xy的范围是_。5.已知a0,b0,ab1,则 的范围是_。6.不等式 >ax 的解集是(4,b),则a_,b_。7.函数y2x 的值域是_。8.在等比数列a 中,a a a 2,a a a 12,求a a a 。9.实数m在什么范围内取值,对任意实数x,不等式sin x2mcosx4m1<0恒成立。10.已知矩形ABCD,顶点C(4,4),A点在曲线x y 2 (x>0,y>0)上移动,且AB、AD始终平行x轴、y轴,求矩形ABCD的最小面积。 三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x) g(x)的充要条件是:对于一个任意的a值,都有f(a) g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:利用对应系数相等列方程;由恒等的概念用数值代入法列方程;利用定义本身的属性列方程;利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。、再现性题组:1.设f(x) m,f(x)的反函数f (x)nx5,那么m、n的值依次为_。A. , 2 B. , 2 C. , 2 D. ,22.二次不等式ax bx2>0的解集是( , ),则ab的值是_。A. 10 B. 10 C. 14 D. 143.在(1x )(1x) 的展开式中,x 的系数是_。A. 297 B.252 C. 297 D. 2074.函数yabcos3x (b<0)的最大值为 ,最小值为 ,则y4asin3bx的最小正周期是_。5.与直线L:2x3y50平行且过点A(1,-4)的直线L的方程是_。6.与双曲线x 1有共同的渐近线,且过点(2,2)的双曲线的方程是_。【简解】1小题:由f(x) m求出f (x)2x2m,比较系数易求,选C;2小题:由不等式解集( , ),可知 、 是方程ax bx20的两根,代入两根,列出关于系数a、b的方程组,易求得ab,选D;3小题:分析x 的系数由C 与(1)C 两项组成,相加后得x 的系数,选D;4小题:由已知最大值和最小值列出a、b的方程组求出a、b的值,再代入求得答案 ;5小题:设直线L方程2x3yc0,点A(1,-4)代入求得C10,即得2x3y100;6小题:设双曲线方程x ,点(2,2)代入求得3,即得方程 1。、示范性题组:例1.已知函数y 的最大值为7,最小值为1,求此函数式。【分析】求函数的表达式,实际上就是确定系数m、n的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。【解】 函数式变形为: (ym)x 4 x(yn)0, xR, 由已知得ym0 (4 ) 4(ym)(yn)0 即: y (mn)y(mn12)0 不等式的解集为(-1,7),则1、7是方程y (mn)y(mn12)0的两根,代入两根得: 解得: 或 y 或者y 此题也可由解集(-1,7)而设(y1)(y7)0,即y 6y70,然后与不等式比较系数而得: ,解出m、n而求得函数式y。【注】 在所求函数式中有两个系数m、n需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m、n的关于y的一元二次不等式,且知道了它的解集,求参数m、n。两种方法可以求解,一是视为方程两根,代入后列出m、n的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m、n的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y视为参数,函数式化成含参数y的关于x的一元二次方程,可知其有解,利用0,建立了关于参数y的不等式,解出y的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。例2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是 ,求椭圆的方程。【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了。设a、b、c后,由已知垂直关系而联想到勾股定理建立一个方程,再将焦点与长轴较近端点的距离转化为ac的值后列出第二个方程。【解】 设椭圆长轴2a、短轴2b、焦距2c,则|BF|a 解得: 所求椭圆方程是: 1也可有垂直关系推证出等腰RtBBF后,由其性质推证出等腰RtBOF,再进行如下列式: ,更容易求出a、b的值。【注】 圆锥曲线中,参数(a、b、c、e、p)的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。在曲线的平移中,几何数据(a、b、c、e)不变,本题就利用了这一特征,列出关于ac的等式。一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)几何条件转换成方程求解已知系数代入。例3. 是否存在常数a、b、c,使得等式1?2 2?3 n(n1) (an bnc)对一切自然数n都成立?并证明你的结论。 (89年全国高考题)【分析】是否存在,不妨假设存在。由已知等式对一切自然数n都成立,取特殊值n1、2、3列出关于a、b、c的方程组,解方程组求出a、b、c的值,再用数学归纳法证明等式对所有自然数n都成立。【解】假设存在a、b、c使得等式成立,令:n1,得4 (abc);n2,得22 (4a2bc);n3,得709a3bc。整理得: ,解得 ,于是对n1、2、3,等式1?2 2?3 n(n1) (3n 11n10)成立,下面用数学归纳法证明对任意自然数n,该等式都成立:假设对nk时等式成立,即1?2 2?3 k(k1) (3k 11k10);当nk1时,1?2 2?3 k(k1) (k1)(k2) (3k 11k10) (k1)(k2) (k2)(3k5)(k1)(k2) (3k 5k12k24) 3(k1) 11(k1)10,也就是说,等式对nk1也成立。综上所述,当a8、b11、c10时,题设的等式对一切自然数n都成立。【注】建立关于待定系数的方程组,在于由几个特殊值代入而得到。此种解法中,也体现了方程思想和特殊值法。对于是否存在性问题待定系数时,可以按照先试值、再猜想、最后归纳证明的步骤进行。本题如果记得两个特殊数列1 2 n 、1 2 n 求和的公式,也可以抓住通项的拆开,运用数列求和公式而直接求解:由n(n1) n 2n n得S 1?2 2?3 n(n1) (1 2 n )2(1 2 n )(12n) 2× (3n 11n10),综上所述,当a8、b11、c10时,题设的等式对一切自然数n都成立。例4. 有矩形的铁皮,其长为30cm,宽为14cm,要从四角上剪掉边长为xcm的四个小正方形,将剩余部分折成一个无盖的矩形盒子,问x为何值时,矩形盒子容积最大,最大容积是多少?【分析】实际问题中,最大值、最小值的研究,先由已知条件选取合适的变量建立目标函数,将实际问题转化为函数最大值和最小值的研究。【解】 依题意,矩形盒子底边边长为(302x)cm,底边宽为(142x)cm,高为xcm。 盒子容积 V(302x)(142x)x4(15x)(7x)x , 显然:15x>0,7x>0,x>0。设V (15aax)(7bbx)x (a>0,b>0) 要使用均值不等式,则 解得:a , b , x3 。 从而V ( )( x)x ( ) ×27576。所以当x3时,矩形盒子的容积最大,最大容积是576cm 。【注】均值不等式应用时要注意等号成立的条件,当条件不满足时要凑配系数,可以用“待定系数法”求。本题解答中也可以令V (15aax)(7x)bx 或 (15x)(7aax)bx,再由使用均值不等式的最佳条件而列出方程组,求出三项该进行凑配的系数,本题也体现了“凑配法”和“函数思想”。、巩固性题组:1.函数ylog x的x2,+)上恒有|y|>1,则a的取值范围是_。A. 2>a> 且a1 B. 0<a< 或1<a<2 C. 1<a<2 D. a>2或0<a< 2.方程x pxq0与x qxp0只有一个公共根,则其余两个不同根之和为_。A. 1 B. 1 C. pq D. 无法确定 3.如果函数ysin2xa?cos2x的图像关于直线x 对称,那么a_。A. B. C. 1 D. 14.满足C 1?C 2?C n?C <500的最大正整数是_。A. 4 B. 5 C. 6 D. 75.无穷等比数列a 的前n项和为S a , 则所有项的和等于_。A. B. 1 C. D.与a有关6.(1kx) b b xb x b x ,若b b b b 1,则k_。7.经过两直线11x3y90与12xy190的交点,且过点(3,-2)的直线方程为_。 8. 正三棱锥底面边长为2,侧棱和底面所成角为60°,过底面一边作截面,使其与底面成30°角,则截面面积为_。9. 设yf(x)是一次函数,已知f(8)15,且f(2)、f(5)、(f14)成等比数列,求f(1)f(2)f(m)的值。10. 设抛物线经过两点(-1,6)和(-1,-2),对称轴与x轴平行,开口向右,直线y2x7和抛物线截得的线段长是4 , 求抛物线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。、再现性题组:1.已知集合A中有2个元素,集合B中有7个元素,AB的元素个数为n,则_。A. 2n9 B. 7n9 C. 5n9 D. 5n72.设MP、OM、AT分别是46°角的正弦线、余弦线和正切线,则_。A. MP<OM<AT B. OM<MP<AT C. AT<<OM<MP D. OM<AT<MP3.复数z a2,z 2,如果|z |< |z |,则实数a的取值范围是_。A. 1<a<1 B. a>1 C. a>0 D. a<1或a>14.椭圆 1上有一点P,它到左准线的距离为 ,那么P点到右焦点的距离为_。A. 8 C. 7.5 C. D. 35. 奇函数f(x)的最小正周期为T,则f( )的值为_。A. T B. 0 C. D. 不能确定6. 正三棱台的侧棱与底面成45°角,则其侧面与底面所成角的正切值为_。【简解】1小题:利用并集定义,选B;2小题:利用三角函数线定义,作出图形,选B;3小题:利用复数模的定义得 < ,选A;4小题:利用椭圆的第二定义得到 e ,选A;5小题:利用周期函数、奇函数的定义得到f( )f( )f( ),选B;6小题:利用线面角、面面角的定义,答案2。、示范性题组:例1. 已知z1, 设wz 3 4,求w的三角形式; 如果 1,求实数a、b的值。(94年全国理)【分析】代入z进行运算化简后,运用复数三角形式和复数相等的定义解答。【解】由z1,有wz 3 4(1) 3 423(1)41,w的三角形式是 (cos sin );由z1,有 (a2)(ab)。由题设条件知:(a2)(ab)1;根据复数相等的定义,得: ,解得 。【注】求复数的三角形式,一般直接利用复数的三角形式定义求解。利用复数相等的定义,由实部、虚部分别相等而建立方程组,这是复数中经常遇到的。例2. 已知f(x)x cx,f(2)14,f(4)252,求ylog f(x)的定义域,判定在( ,1)上的单调性。【分析】要判断函数的单调性,必须

    注意事项

    本文(高中数学解题方法大全.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开