中考数学动点问题专题讲解(共7页).doc
精选优质文档-倾情为你奉上动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PHOA,垂足为H,OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).HMNGPOAB图1(3)如果PGH是等腰三角形,试求出线段PH的长.解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.(2)在RtPOH中, , .在RtMPH中,.=GP=MP= (0<<6).(3)PGH是等腰三角形有三种可能情况:GP=PH时,解得. 经检验, 是原方程的根,且符合题意.GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意.PH=GH时,.综上所述,如果PGH是等腰三角形,那么线段PH的长为或2.二、应用比例式建立函数解析式 例2如图2,在ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=. (1)如果BAC=30°,DAE=105°,试确定与之间的函数解析式; AEDCB图2 (2)如果BAC的度数为,DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.解:(1)在ABC中,AB=AC,BAC=30°, ABC=ACB=75°, ABD=ACE=105°.BAC=30°,DAE=105°, DAB+CAE=75°, 又DAB+ADB=ABC=75°, CAE=ADB, ADBEAC, , , .(2)由于DAB+CAE=,又DAB+ADB=ABC=,且函数关系式成立,=, 整理得.当时,函数解析式成立.如三、应用求图形面积的方法建立函数关系式ABCO图8H例4()如图,在ABC中,BAC=90°,AB=AC=,A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,AOC的面积为.(1)求关于的函数解析式,(2)以点O为圆心,BO长为半径作圆O,求当O与A相切时,AOC的面积.解:(1)过点A作AHBC,垂足为H.BAC=90°,AB=AC=, BC=4,AH=BC=2. OC=4-., ().(2)当O与A外切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.当O与A内切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.综上所述,当O与A相切时,AOC的面积为或.专题二:动态几何型压轴题动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。一、以动态几何为主线的(二)线动问题在矩形ABCD中,AB3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把ABE沿直线l翻折,点A与矩形ABCD的对称中心A重合,求BC的长;ABCDEOlA(2)若直线l与AB相交于点F,且AOAC,设AD的长为,五边形BCDEF的面积为S.求S关于的函数关系式,并指出的取值范围;探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由题型背景和区分度测量点ABCDEOlF本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线沿AB边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二区分度性小题处理手法1找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法2直线与圆的相切的存在性的处理方法:利用d=r建立方程3解题的关键是用含的代数式表示出相关的线段. 略解(1)A是矩形ABCD的对称中心ABAAACABAB,AB3AC6 (2), ()若圆A与直线l相切,则,(舍去),不存在这样的,使圆A与直线l相切.( 例3:如图,在等腰直角三角形ABC中,斜边BC=4,OABC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。判断OEF的形状,并加以证明。判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值. AEF的面积是否随着点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值。本题包容的内涵十分丰富,还可以提出很多问题研究:比如,比较线段EF与AO长度大小等(可以通过A、E、O、F四点在以EF为直径的圆上得出很多结论)例8:如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。如果、同时出发,用t秒表示移动的时间(0 t 6),那么:(1)当t为何值时,三角形QAP为等腰三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与ABC相似?分析:(1)当三角形QAP为等腰三角形时,由于A为直角,只能是AQ=AP,建立等量关系,即时,三角形QAP为等腰三角形;(2)四边形QAPC的面积=ABCD的面积三角形QDC的面积三角形PBC的面积=36,即当P、Q运动时,四边形QAPC的面积不变。(3)显然有两种情况:PAQABC,QAPABC,由相似关系得或,解之得或建立关系求解,包含的内容多,可以是函数关系,可以是方程组或不等式等,通过解方程、或函数的最大值最小值,自变量的取值范围等方面来解决问题;也可以是通过一些几何上的关系,描述图形的特征,如全等、相似、共圆等方面的知识求解。 专题四:函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。求抛物线的解析式;(用顶点式求得抛物线的解析式为)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得OBP与OAB相似?若存在,求出P点的坐标;若不存在,说明理由。例1题图图1图2分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例1(,已知ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t2时,判断BPQ的形状,并说明理由;(2)设BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR/BA交AC于点R,连结PR,当t为何值时,APRPRQ?分析:由t2求出BP与BQ的长度,从而可得BPQ的形状;作QEBP于点E,将PB,QE用t表示,由=×BP×QE可得S与t的函数关系式;先证得四边形EPRQ为平行四边形,得PR=QE,再由APRPRQ,对应边成比例列方程,从而t值可求.解:(1)BPQ是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,即BQ=BP.又因为B=600,所以BPQ是等边三角形.(2)过Q作QEAB,垂足为E,由QB=2t,得QE=2t·sin600=t,由AP=t,得PB=6-t,所以=×BP×QE=(6-t)×t=t2+3t;(3)因为QRBA,所以QRC=A=600,RQC=B=600,又因为C=600,所以QRC是等边三角形,这时BQ=2t,所以QR=RC=QC=6-2t.因为BE=BQ·cos600=×2t=t,AP=t,所以EP=AB-AP-BE=6-t-t=6-2t,所以EP=QR,又EPQR,所以四边形EPRQ是平行四边形,所以PR=EQ=t,由APRPRQ,得到,即,解得t=,所以当t=时, APRPRQ.点评: 本题是双动点问题.动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.)如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围);(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由 分析:由BHDBAC,可得DH;由RQCABC,可得关于的函数关系式;由腰相等列方程可得的值;注意需分类讨论.解:(1),点为中点,(2),即关于的函数关系式为:(3)存在.按腰相等分三种情况:ABCDERPHQM21当时,过点作于,则,ABCDERPHQ,当时,当时,则为中垂线上的点,于是点为的中点,综上所述,当为或6或时,为等腰三角形点评:建立函数关系式,实质就是把函数y用含自变量x的代数式表示;要求使为等腰三角形的的值,可假设为等腰三角形,找到等量关系,列出方程求解,由于题设中没有指明等腰三角形 注意分情况 专心-专注-专业