欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学专题存在性问题解题策略《角的存在性处理策略》(共14页).doc

    • 资源ID:5451846       资源大小:1,005.50KB        全文页数:14页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学专题存在性问题解题策略《角的存在性处理策略》(共14页).doc

    精选优质文档-倾情为你奉上第1讲 角的存在性处理策略 知识必备一、一线三等角 1.如图1-1-1,且,此为“一线三直角”全等,又称“K字型”全等; 图1-1-1 图1-1-2 图1-1-3 图1-1-4 2.如图1-1-2,此为“一线三直角”相似,又称“K字型”相似; 3.如图1-1-3,此为更一般的“一线三等角”.二、相似三角形的性质 相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例.3、 正切的定义 如图1-1-4,在中,即的正切值等于的对边与的邻边之比;同理,则,即互余两角的正切值互为倒数.方法提炼1、 基本策略:联想构造2、 构造路线 方式(一):构造“一线三等角” 1.45o角构等腰直角三角形造“一线三直角”全等,如图1-2-1; 图1-2-1 2.30o角构直角三角形造“一线三直角”相似,如图1-2-2; 图1-2-23.tan=k构直角三角形造“一线三直角”相似,如图1-2-3;图1-2-34.“一线三等角”的应用分三重境界;一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”;二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题;三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示;图1-2-7图1-2-6图1-2-5图1-2-4方式(二):构造“母子型相似”“角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似”,其核心结构如图1-2-8所示.图1-2-8方式(三):整体旋转法(*)前两种构造属静态构造方式,再介绍一种动态构造方式,即整体旋转法,其核心思想是“图形的旋转(运动)本质是图形上点旋转(运动);反过来,点的旋转(运动)可以看成该点所在图形的旋转(运动)”.下面以三个问题说明此法:问题1 已知点A(3,4),将点A绕原点O顺时针方向旋转45º角,求其对应点A的坐标.简析 第一步 (“整体旋转”):如图1-2-9,作ABy轴于点B,则AB=3,OB=4,点A绕原点O顺时针方向旋转45º得到点A,可看成RtOAB绕原点O顺时针方向旋转45º得到RtOAB,则AB=8,OB=4,且BOB=45º; 图1-2-9第二步(造“一线三直角”):如图1-2-10,依托旋转后的Rt,作系列“水平竖直辅助线”,构造“一线三直角”,即RtRt;图1-2-10事实上,Rt与Rt都是等腰直角三角形,于是有=,=,故点的坐标为;问题2 已知点,将点绕原点顺时针方向旋转角,其中=,求其对应点的坐标.简析 第一步(“整体旋转”):如图1-2-11,作ABy轴于点B,则AB=4,OB=6,将RtOAB绕原点O顺时针方向旋转角得到Rt,则=4,=6,且=; 图1-2-12图1-2-11第二步(造“一线三直角”):如图1-2-12,依托旋转后的Rt,作系列“水平竖直辅助线”,构造“一线三直角”,即RtRt,于是有=,=,=,=,故点的坐标为.问题3 已知点,将点绕原点顺时针方向旋转角,求其对应点的坐标.简析 不是一般性,不妨都在第一象限内思考问题:第一步(“整体旋转”):如图1-2-13,作ABy轴于点B,则AB=,OB=,将RtOAB绕原点O顺时针方向旋转角得到Rt,则=,=,且=; 图1-2-14图1-2-13第二步(造“一线三直角”):如图1-2-14,依托旋转后的Rt,作系列“水平竖直辅助线”,构造“一线三直角”,即RtRt,于是有=,=,=,=,故点的坐标为.例1(2017日照)如图1-3-1,在平面直角坐标系中,经过点A的双曲线同时经过点B,且点A在点B的左侧,点A的横坐标为,AOB=OBA=45°,则k的值为_。 简析由题可知,OAB为等腰直角三角形;如图1-3-2,构造“一线三直角”结构,即RtOADRtABC;设OD=AC=t,则A(,t),B(,),从而有t=()(),解得;因此有。反思:见等腰直角三角形,造“一线三直角”,即“K字型”全等。例2如图1-3-3,已知反比例函数的图像经过点A(3,4),在该图像上找一点P,使POA=45°,则点P的坐标为_。 简析1(构造“一线三直角”):如图1-3-4,作ABOA交OP于点B,则OAB为等腰直角三角形;再造“一线三直角”结构,即RtOADRtABC,由A(3,4),可得OD=AC=4,AD=BC=3,则B(7,1),故直线OP的解析式为,且反比例函数的解析式为,联立得,解得(负值舍去),故点P的坐标为(,)。简析2(构造“一线三等角”):如图1-3-5,分别过点A、P作y轴的垂线,垂足依次为点D、E,再在y轴上分别找点B、C,使BD=AD,CE=PE,则ABO=PCO=45°;由POA=45°,易证ABOOCP,则,即ABCP=BOOC;由A(3,4),可得,BO=BD+OD=7,k=12,再设点P(t,),则CP=,OC=CE-OE=PE-OE=,从而有,解得,故点P的坐标为()。450是一个神奇美妙、让人浮想联翩的角。依托450角,自然联想到构造等腰直角三角形。然后依托等腰直角三角形,再造“一线三直角”,这是处理450角的基本策略之一。如图1-3-6,若C=450,一般有四种方式构造直角三角形,但建议将已知点作为直角顶点,相对而言会更简单。这也体现出了“以不变应万变”的解题策略。解法1,从头到尾几乎口算,不需要设元,原因在于构造等腰直角三角形时。将已知点A作为直角顶点,否则需要设元求解,很是麻烦。解法2,将y轴看成所谓“一线”。利用一个450角,再补两个“450”角,构造“一线三等角”,设出坐标,巧妙解题,这是角的存在性问题另一种重要处理策略。如图1-3-7,已知抛物线与轴交于A、B两点,且经过点、,点P是直线CD上方抛物线上一动点,当时,求点P的坐标。图1-3-9图1-3-8图1-3-7策略一:450 构等腰直角三角形造“一线三直角”.简析:易求抛物线的解析式为,直线CD的解析式为如图1-3-8,过点D作DQCQ,交CP的延长线于点Q,过点D作平行于y轴 的直线,并分别过点C、Q向该直线上作垂线,垂足依次为点E、F,则CDQ为等腰直角三角形,CEDDFQ,DF=CE=3,QF=DE=,故Q点坐标为利用C、Q两点,可以求出直线CP的解析式,在与抛物线联立得 ,解得(舍去),或 ,因此点P坐标为类似的,也可以过点P作垂线等。但不推荐,否则直角顶点未知。需要设元求解,而简析1直角顶点D已知,故而顺风顺雨。理论上,在直线CD上任取一个已知点,将之做为等腰直角三角形的直角顶点,都可顺利解决,如图1-3-9所示,可自行探究。对比例2,还可以发现,双曲线与抛物线都是“幌子”,借助450角的处理策略,他们仅仅起到最后联立解方程组求交点的作用。练就“慧眼”,便可以“识珠”,很多题目的命制套路就是如此.策略二:一个45°补两个45°造“一线三等角” 如图1310,过点P、D向轴上做垂线,补出两个45°角,构出“一线三等角”结构,即PCECDF,则有,即PE·DF=CE·CF;由题可设P(t,-t+t+2),易得PE=t,DF=3,CE=-t+t+2+t-2=-t²+t,CF=2-(-3)=,因此有t·3=(-t²+t),解得t=(t=0舍去),故点坐标为(,)因本题数据的特殊性,最后可以看出,点P、D的纵坐标相等,故过点P、D向y轴做垂线,垂足重合,即图中的G点,其实巧合与否,对解题并无影响;此外,所谓“一线”,也可以做成“水平线,甚至于“斜线”,可自行探究,一般选择现有的“一线”比较合适。策略三:一个45°再补一个45°造“母子型相似”如图1-3-11,过点D作y轴的平行线交CP的延长线于点Q,交x轴于点G,再作CEQG于点E,构造等腰RTCEF,则F=45°,EF=CE=3,DE=由PCD=45°,可得QCDQFC,易证QC²=QD·QF;设QD=t,则QC²=QE²+CE²=(t+)²+9,故有(t+)²+9=t·(t+),解得t=,故点的坐标为(3,11)再利用C、Q两点,可求出直线的解析式为y=3x+2,与抛物线联立得y=3x=2、y=-x²+x+2解得x=0、y=2,(舍去)或x=、y=,故点坐标为(,)。“母子型相似”与“一线三等角”是极其重要的基本相似形,上述解法都将是将其视为“工具”,结合这些基本图形的结构特征,缺啥补啥,巧妙构造,顺利求解.策略四:45°“整体旋转”+“矩形大法”第一步(“整体旋转”):如图1-3-12,过两点作相应“水平竖直辅助线”,构造RTCDE,再将RTCDE绕点C逆时针旋转45°至RTCDE,则CE=CE=3,DE=DE=,且ECE=45°第二步(“矩形大法”):如图1-3-13,依托旋转后的RtCDE,作系列“水平竖直辅助线”,构造矩形CGHK,则RtCGERtEHD,事实上,RtCGE与RtEHD都是等腰直角三角形,于是有CG=EG=,DH=EH=,则DK=-=,OK=OC+CK=2+,故点D的坐标为(,2+),下略.图1-3-13 反思 这里运用动态视角,借助旋转的眼光看问题,将点的旋转看成该点所在的直角三角形的旋转,巧思妙构,利用系列“水平竖直辅助线”,达到“改斜规正,化斜为直”之效,虽然最后的数据稍显“丑陋”,但并不影响此法的通用性与普适性.因为45°的特殊性,本题还可以尝试采用所谓的“半角模型”来求解.策略五: 45°正方形中的“半角模型”简析5 如图1-3-14,作正方形CEFG,使CG边在y轴上,且边EF过点D,直线CP与FG交于点Q;图1-3-14 图1-3-15设QG=x,由PCD=45°,结合正方形中“半角模型”,可得QD=QG+DE=x+,最后锁定RtQDF,由勾股定理得(3-x)²+()²=(x+)²,解得x=1,故点Q坐标为(1,5),下略.反思:正方形中“半角模型”应用广泛,核心结构如图1-3-15所示,其结论众多,常用的有:EF=AE+CF,EB平分AEF,FB平分CFE等,可通过旋转法加以证明;通过前面的例题探究可以看出:紧抓45°角不放手,扣住一条主线,即“45°角构造等腰直角三角形造K字形全等”,是处理45°角问题的通解通法;当然也可以构造一些常见的几何模型,如“一线三等角”、“母子形相似”、“半角模型”等;其实45°角只是一个特例、一个代表而已,若将45°改为30°等特殊角,甚至改成更一般的已知其三角函数值的确定角,都可以类似解决. 例4(2014年临夏)如图1-3-16,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x²-3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在抛物线上,且横坐标为3.(1)求点M 、A 、B坐标;(2)连接AB AM BM ,求ABM的正切值;(3)点P为顶点为M的抛物线上一点,且位于对称轴右侧,设PO与x正半轴的夹角为,当=ABM时,求P点坐标图1-3-16简析:(1)图示抛物线的解析式为,则M(1,-3),A(0,-2),B(3,1);(2)法1(代数法):利用两点间距离公式计算。验算,可证,在RtABM中,可得tan=;法2(几何法):如图1-3-17,分别过点B、M作y轴的垂线,垂足依次为点C、D,由题可得AD=MD=1,AC=BC,=3,则ADM与ABC均为等腰直角三角形,故么DAM=CAB=,AM=,AB=3,从而有么,在RtABM中,可得tan=;(3)由题知tan=tan=,显然符合条件的点P有两个:当点P在x轴上方时,由B(3,1),易知点P与点B重合,即点P(3,1);当点P在x轴下方时,如图1-3-18,作PG上x轴于点G,则tan=,可设PG=m(m>0)则OG=3m,故点P(3m,-m),代入抛物线得,解得<0(舍去),故点P综上所述:点P的坐标为(3,1)或。第(2)小问给我们的解题启示:大胆猜想,小心求证,即为求tan的值,首先从几何直观上猜想,然后利用勾股逆定理验边或几何上导角等加以说理;而第(3)小问属典型的“角处理”问题,其基本的解题之道是“正切处理”,即通过“横平竖直”辅助线,将角问题转化为边问题,再巧设边长,妙写坐标,代入解析式即可;另外,本题简单在么a有一条“水平边”,即平行于坐标轴的边,若无“水平边”或“竖直边”.又如何处理呢?请看下例:如图1-3-19,二次函数的图像与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的解析式及A、B的坐标;(2)若点P(0,t)(t<-1)是y轴上的一点,Q(-5,0),将点Q绕着点P按顺时针方向旋转得到点E,当点E恰好落在该二次函数的图像上时,求t的值;(3)在(2)的条件下,连接AD、AE,若M是该二次函数图像上的一点,且么DAE=MCB,求点M的坐标。简析:(1)由题易得m=-1,则二次函数的解析式为。且有点A(-1,0)及B(3,0);(2)如图1-3-20,作“K字型全等”'即RtPQRRtEPF,则PF=QR=-t,EF=PR=5,故点E(-t,t+5),代人抛物线得解得t=-1或-2,因为t<-1,所以t=-2;反思“见等腰直角三角形,造K字型全等”,再次发挥奇效。(3)同例4,首先验证DAE是一个直角三角形,可得tanDAE=,则tanMCB=,如图1-3-21; 显然符合条件的点M有两个:当点M在CB的下方时,如图1-2-22,过点B作BNCB交CM1于点N,再构造“K字型相似”,即RtBCGRtNBH,其相似比为3,可得N(2,-1),则直线CM1的解析式为 y=-2x+3, x=0, x=4,y=-2x+3,与抛物线联立得 y=-x2+2x+3, 解得 y=3,(舍去)或 y=-5,故点M1的坐标为(4,-5);当点M在CB的上方时,如图1-3-23,同上可得N(4,1),进而得点M2的坐标为(,);综上所述:点M的坐标为(4,-5)或(,)。反思“瞎想与遐想”是一种重要的数学感性意识,是几何学必备的数学素养,本题依然大胆地猜想AED=90°,再小心地验算,这里还包含了基本的“确定性思想”;本题“角处理”的方式其实还是“正切处理”,只不过这里的tanMCB=,需要再转化为后续“K字型”的相似比,才能进一步求解,而后者发挥的作用又是“改邪归正、化斜为直”;此外,前文中构造的“一线三等角”、“母子型相似”以及“整体旋转法”依然适用本题,有兴趣可以一试。总结角的存在性问题常见的处理策略有:构造“一线三等角”(含“一线三直角”,即“K字型”)、 “母子型相似”、“整体旋转法”等;“角处理”经常利用正切转化为“边处理”,如角定,则正切值定;角相等,则正切值相等,再结合更常见的“横平竖直”辅助线,以达“改邪归正、化斜为直”之效。类题巩固1(2017年湖北孝感)如图141,在平面直角坐标系中,OA=AB,OAB=90°,反比例函数(x>0)的图像经过A、B两点,若已知A(n,1),则k的值为 .图1412如图142,直线y=3x与双曲线(x>0)交于A点,点P是该双曲线第一象限上的一点,且AOP=1+2,则点P的坐标为 .图1423如图143,已知反比例函数(x>0)的图像经过点A(4,6),在OA右侧该图像上找一点P,使tanPOA=,则点P的坐标为 .图1434如图144,在矩形ABCD中,E是边AB上的一点,AE=2,BE=4,连接DE,作DEF=45°交边BC于点F,若AD=x,BF=y,则y关于x的函数关系式为 .图1445如图145,抛物线经过A(1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,P为抛物线上一点,且DBP=45°,求点P的坐标;变式1:连接BD,P为抛物线上一点,且DBP=135°,求点P的坐标;变式2:连接BD,P为抛物线上一点,且tanDBP=2,求点P的坐标.备用图图145 专心-专注-专业

    注意事项

    本文(中考数学专题存在性问题解题策略《角的存在性处理策略》(共14页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开