欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    余弦定理公式(共4页).doc

    • 资源ID:5459876       资源大小:246.50KB        全文页数:4页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    余弦定理公式(共4页).doc

    精选优质文档-倾情为你奉上 1三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos=sin, sin=cos(2)面积公式:S=absinC=bcsinA=casinBS= pr = (其中p=, r为内切圆半径)(3)射影定理:a = bcosC + ccosB;b = acosC + ccosA;c = acosB + bcosA2正弦定理:证明:由三角形面积得画出三角形的外接圆及直径易得:3余弦定理:a2=b2+c2-2bccosA, ; 证明:如图ABC中,当A、B是钝角时,类似可证。正弦、余弦定理可用向量方法证明。要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题4利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b时有两解;a=bsinA或a=b时有 解;a<bsinA时无解。5利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。6熟练掌握实际问题向解斜三角形类型的转化,能在应用题中抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;提高运用所学知识解决实际问题的能力历年考题 如图,在中,(1)求的值;(2)求的值. 解(1): 由余弦定理, (2)解:由,且得由正弦定理: 解得。所以,。由倍角公式,且,故.解题方法:已知两边夹角,用余弦定理,由三角函数值求三角函数值时要注意“三角形内角”的限制.在ABC中,已知a=,b=,B=45°,求A,C及边c解:由正弦定理得:sinA=,因为B=45°<90°且b<a,所以有两解A=60°或A=120°(1)当A=60°时,C=180°-(A+B)=75°, c=,(2)当A=120°时,C=180°-(A+B)=15 °,c=解题方法:已知两边和其中一边的对角解三角形问题,用正弦定理求解,必需注意解的情况的讨论如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救 甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到)?解 连接BC,由余弦定理得_10_A_北_20_C_BBC2=202+1022×20×10COS120°=700 于是,BC=10 30° , sinACB=, ACB<90° ACB=41°乙船应朝北偏东71°方向沿直线前往B处救援 已知O的半径为R,在它的内接三角形ABC中,有成立,求ABC面积S的最大值解:由已知条件得即有 ,又 当时, 如图,已知是边长为的正三角形, 、分别是边、上的点,线段经过的中心.设.(1) 试将、的面积(分别记为与)表示为的函数;(2) 求的最大值与最小值.解: (1)因为为边长为的正三角形的中心, 所以 由正弦定理 因为,所以当时,的最大值; 当时, 的最小值.专心-专注-专业

    注意事项

    本文(余弦定理公式(共4页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开