(完整word版)高中数学数列专题大题训练(word文档良心出品).pdf
-
资源ID:55047573
资源大小:650.02KB
全文页数:22页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(完整word版)高中数学数列专题大题训练(word文档良心出品).pdf
高中数学数列专题大题组卷一选择题(共9 小题)1 等差数列 an的前 m 项和为 30,前 2m 项和为 100,则它的前 3m 项和为()A130 B170 C 210 D2602已知各项均为正数的等比数列 an,a1a2a3=5,a7a8a9=10,则 a4a5a6=()AB7 C 6 D3数列 an的前 n 项和为 Sn,若 a1=1,an+1=3Sn(n1),则 a6=()A344B344+1 C44D44+14已知数列 an 满足 3an+1+an=0,a2=,则 an 的前 10项和等于()A6(1310)BC3(1310)D3(1+310)5等比数列 an 的前 n 项和为 Sn,已知 S3=a2+10a1,a5=9,则 a1=()ABC D6已知等差数列 an 满足 a2+a4=4,a3+a5=10,则它的前 10 项的和 S10=()A138 B135 C 95 D237设等差数列 an 的前 n 项和为 Sn,若 Sm1=2,Sm=0,Sm+1=3,则 m=()A3 B4 C 5 D68等差数列 an 的公差为 2,若 a2,a4,a8成等比数列,则 an 的前 n 项和 Sn=()An(n+1)Bn(n1)C D9设an 是等差数列,下列结论中正确的是()A若 a1+a20,则 a2+a30 B若 a1+a30,则 a1+a20C若 0a1a2,则 a2D若 a10,则(a2a1)(a2a3)0二解答题(共14小题)10设数列 an(n=1,2,3,)的前 n 项和 Sn满足 Sn=2ana1,且 a1,a2+1,a3成等差数列 ()求数列 an 的通项公式;()记数列 的前 n 项和为 Tn,求使得|Tn1|成立的 n 的最小值11设等差数列 an 的公差为 d,前 n 项和为 Sn,等比数列 bn 的公比为 q,已知 b1=a1,b2=2,q=d,S10=100(1)求数列 an,bn的通项公式(2)当 d1 时,记 cn=,求数列 cn的前 n 项和 Tn12已知数列 an 满足 a1=1,an+1=3an+1()证明 an+是等比数列,并求 an 的通项公式;()证明:+13已知等差数列 an的公差不为零,a1=25,且 a1,a11,a13成等比数列()求 an 的通项公式;()求 a1+a4+a7+a3n214等差数列 an 中,a7=4,a19=2a9,()求 an 的通项公式;()设 bn=,求数列 bn 的前 n 项和 Sn15已知等比数列 an中,a1=,公比 q=()Sn为an的前 n 项和,证明:Sn=()设 bn=log3a1+log3a2+log3an,求数列 bn 的通项公式16已知数列 an 满足 an+2=qan(q 为实数,且 q1),nN*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求 q 的值和 an 的通项公式;(2)设 bn=,nN*,求数列 bn的前 n 项和17 已知数列 an 是首项为正数的等差数列,数列 的前 n 项和为(1)求数列 an 的通项公式;文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9文档编码:CT7L2V2I2A9 HJ3P5V7M4H7 ZA1B9W5H3D9 (2)设 bn=(an+1)?2,求数列 bn的前 n 项和 Tn18 已 知 数 列 an 和 bn 满 足a1=2,b1=1,an+1=2an(n N*),b1+b2+b3+bn=bn+11(nN*)()求 an与 bn;()记数列 anbn 的前 n 项和为 Tn,求 Tn19已知数列 an 是递增的等比数列,且a1+a4=9,a2a3=8(1)求数列 an 的通项公式;(2)设 Sn为数列 an 的前 n 项和,bn=,求数列 bn 的前 n 项和 Tn20设数列 an的前 n 项和为 Sn,已知 2Sn=3n+3()求 an 的通项公式;()若数列 bn,满足 anbn=log3an,求bn的前 n 项和 Tn21设数列 an的前 n 项和为 Sn已知 a1=a,an+1=Sn+3n,nN*由()设 bn=Sn3n,求数列 bn 的通项公式;()若 an+1an,nN*,求 a 的取值范围22已知等差数列 an的公差为 2,前 n 项和为 Sn,且 S1,S2,S4成等比数列()求数列 an 的通项公式;()令 bn=(1)n1,求数列 bn 的前 n 项和 Tn23数列 an 满足 a1=1,nan+1=(n+1)an+n(n+1),nN*()证明:数列 是等差数列;()设 bn=3n?,求数列 bn 的前 n 项和 Sn文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4 高中数学数列专题大题组卷参考答案与试题解析一选择题(共9 小题)1(1996?全国)等差数列 an 的前 m 项和为 30,前 2m 项和为 100,则它的前3m 项和为()A130 B170 C 210 D260【分析】利用等差数列的前n 项和公式,结合已知条件列出关于a1,d 的方程组,用 m 表示出 a1、d,进而求出 s3m;或利用等差数列的性质,sm,s2msm,s3ms2m成等差数列进行求解【解答】解:解法 1:设等差数列 an 的首项为 a1,公差为 d,由题意得方程组,解得 d=,a1=,s3m=3ma1+d=3m+=210故选 C解法 2:设 an为等差数列,sm,s2msm,s3ms2m成等差数列,即 30,70,s3m100 成等差数列,30+s3m100=702,解得 s3m=210故选 C【点评】解法 1 为基本量法,思路简单,但计算复杂;解法2 使用了等差数列的一个重要性质,即等差数列的前n 项和为 sn,则 sn,s2nsn,s3ns2n,成等差数列文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4 2(2010?大纲版)已知各项均为正数的等比数列an,a1a2a3=5,a7a8a9=10,则 a4a5a6=()AB7 C 6 D【分析】由数列 an 是等比数列,则有a1a2a3=5?a23=5;a7a8a9=10?a83=10【解答】解:a1a2a3=5?a23=5;a7a8a9=10?a83=10,a52=a2a8,故选 A【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想3(2011?四川)数列an的前 n 项和为 Sn,若 a1=1,an+1=3Sn(n1),则 a6=()A344B344+1 C44D44+1【分析】根据已知的 an+1=3Sn,当 n 大于等于 2 时得到 an=3Sn1,两者相减,根据 SnSn1=an,得到数列的第n+1 项等于第 n 项的 4 倍(n 大于等于 2),所以得到此数列除去第1 项,从第 2 项开始,为首项是第 2 项,公比为 4 的等比数列,由 a1=1,an+1=3Sn,令 n=1,即可求出第 2 项的值,写出 2 项以后各项的通项公式,把 n=6代入通项公式即可求出第6 项的值【解答】解:由 an+1=3Sn,得到 an=3Sn1(n2),两式相减得:an+1an=3(SnSn1)=3an,则 an+1=4an(n2),又 a1=1,a2=3S1=3a1=3,得到此数列除去第一项后,为首项是3,公比为 4 的等比数列,所以 an=a2qn2=34n2(n2)则 a6=344故选 A【点评】此题考查学生掌握等比数列的确定方法,会根据首项和公比写出等比数列的通项公式,是一道基础题文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4 4(2013?大纲版)已知数列 an 满足 3an+1+an=0,a2=,则an的前 10 项和等于()A6(1310)BC3(1310)D3(1+310)【分析】由已知可知,数列 an 是以为公比的等比数列,结合已知可求 a1,然后代入等比数列的求和公式可求【解答】解:3an+1+an=0数列 an 是以为公比的等比数列a1=4由等比数列的求和公式可得,S10=3(1310)故选 C【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题5(2013?新课标)等比数列 an的前 n 项和为 Sn,已知 S3=a2+10a1,a5=9,则a1=()ABC D【分析】设等比数列 an 的公比为 q,利用已知和等比数列的通项公式即可得到,解出即可【解答】解:设等比数列 an 的公比为 q,S3=a2+10a1,a5=9,文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4 ,解得故选 C【点评】熟练掌握等比数列的通项公式是解题的关键6(2008?全国卷)已知等差数列 an 满足 a2+a4=4,a3+a5=10,则它的前 10 项的和 S10=()A138 B135 C 95 D23【分析】本题考查的知识点是等差数列的性质,及等差数列前n 项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前 n 项和公式,即可求解【解答】解:(a3+a5)(a2+a4)=2d=6,d=3,a1=4,S10=10a1+=95故选 C【点评】在求一个数列的通项公式或前n 项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式7(2013?新课标)设等差数列 an 的前 n 项和为 Sn,若 Sm1=2,Sm=0,Sm+1=3,则 m=()A3 B4 C 5 D6【分析】由 an与 Sn的关系可求得 am+1与 am,进而得到公差 d,由前 n 项和公式及 Sm=0 可求得 a1,再由通项公式及am=2可得 m 值【解答】解:am=SmSm1=2,am+1=Sm+1Sm=3,所以公差 d=am+1am=1,文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J9V1 HG7K7V6F9P10 ZS5Y1O10F2E4文档编码:CF7G1R2J