(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一).pdf
1 2019-2020 年高考数学大题专题练习 圆锥曲线(一)1.设 F1,F2为椭圆22143xy的左、右焦点,动点P 的坐标为(1,m),过点F2的直线与椭圆交于 A,B 两点.(1)求 F1,F2的坐标;(2)若直线PA,PF2,PB 的斜率之和为0,求 m 的所有整数值.2.已知椭圆2214xy,P 是椭圆的上顶点.过 P 作斜率为k(k0)的直线l 交椭圆于另一点A,设点A 关于原点的对称点为 B.(1)求 PAB 面积的最大值;(2)设线段PB 的中垂线与y轴交于点N,若点 N 在椭圆内部,求斜率k 的取值范围.3.已知椭圆()2222:10 xyCabab+=的离心率为53,定点()2,0M,椭圆短轴的端点是1B,2B,且21MBMB.(1)求椭圆C的方程;(2)设过点M且斜率不为0 的直线交椭圆C于,A B 两点,试问x轴上是否存在定点P,使PM平分APB?若存在,求出点P的坐标,若不存在,说明理由.精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 22 页 -2 4.已知椭圆C的标准方程为2211612xy,点(0,1)E(1)经过点E且倾斜角为34的直线 l 与椭圆 C 交于A、B两点,求|AB(2)问是否存在直线p与椭圆交于两点M、N 且|MENE,若存在,求出直线p斜率的取值范围;若不存在说明理由5.椭圆1C 与2C 的中心在原点,焦点分别在x轴与y轴上,它们有相同的离心率22e=,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是2 2.(1)求椭圆1C 与2C 的方程;(2)设P是椭圆2C 上非顶点的动点,P与椭圆1C 长轴两个顶点A,B的连线PA,PB分别与椭圆1C 交于E,F点.(i)求证:直线PA,PB斜率之积为常数;(ii)直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 22 页 -文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L2文档编码:CD9F5Y6N9N9 HO5A2F2U1T10 ZJ4H1J2C10L23 6.椭圆C一个焦点为(1,0)F,离心率22e()求椭圆 C 的方程式()定点(0,2)M,P 为椭圆 C 上的动点,求|MP 的最大值;并求出取最大值时P 点的坐标求()定直线:2lx,P 为椭圆 C 上的动点,证明点P 到(1,0)F的距离与到定直线l 的距离的比值为常数,并求出此常数值7.如图,已知椭圆2222:1(0)xyCabab的右准线l的方程为4 33x,焦距为2 3.(1)求椭圆C的方程;(2)过定点(1,0)B作直线l与椭圆C交于点,P Q(异于椭圆C的左、右顶点12,A A)两点,设直线1PA与直线2QA相交于点M.若(4,2)M,试求点,P Q的坐标;求证:点M始终在一条直线上.精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 22 页 -文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W54 8.设 椭 圆13222yax(3a)的 右 焦 点 为F,右 顶 点 为A,已 知|3|1|1FAeOAOF,其中O为原点,e为椭圆的离心率.()求椭圆的方程;()设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若HFBF,且MOAMAO,求直线l的斜率的取值范围.9.已知椭圆22:11612xyC的右焦点为F,右顶点为A,离心离为e,点(,0)(4)P mm满足条件|FAeAP()求 m 的值()设过点F 的直线l与椭圆 C 相交于 M、N 两点,记PMF和PNF的面积分别为1S、2S,求证:12|SPMSPN10.已知常数0m,向量(0,1)ar,(,0)bmr经过点(,0)A m,以abrr为方向向量的直线与经过点(,0)Bm,以4barr为方向向量的直线交于点P,其中R(1)求点 P 的轨迹方程,并指出轨迹E(2)若点(1,0)C,当2 2m时,M 为轨迹 E 上任意一点,求|MC 的最小值精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页,共 22 页 -文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W55 11.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F与x轴不垂直的直线交椭圆于P,Q两点()求椭圆的方程()当直线 l 的斜率为1时,求POQ的面积()在线段 OF 上是否存在点(,0)M m,使得经MP,MQ 为领边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由12.已知椭圆C的中心在原点,焦点在x轴上,离心率等于32,它的一个顶点恰好在抛物线28xy的准线上求椭圆 C 的标准方程点(2,3)P,(2,3)Q在椭圆上,A,B是椭圆上位于直线PQ 两侧的动点(i)若直线AB的斜率为36,求四边形APBQ 面积的最大值(ii)当A,B运动时,满足APQBPQ,试问直线AB的斜率是否为定值,请说明理由ABQPO yx精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 22 页 -文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W56 13.已知椭圆2222:1(0)xyMabab+过点(0,1)A,且离心率32e()求椭圆M的方程()若椭圆M上存在点B、C关于直线1ykx对称,求k的所有取值构成的集合S,并证明对于kS,BC的中点恒在一条定直线上14.已知椭圆2222:1(0)xyCabab+的离心率为12,且过点31,2若点00(,)M xy在椭圆C上,则点00,xyNab称为点M的一个“椭点”(1)求椭圆C的标准方程(2)若直线:lykxm+与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以 PQ 为直径的圆经过坐标原点,试判断AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由15.已知椭圆C的标准方程为22221(0)xyabab,离心率22e,且椭圆经过点(0,1)过右焦点F的直线l交椭圆C于A,B两点()求椭圆 C 的方程()若42|3AB,求直线 l 的方程()在线段 OF 上是否存在点(,0)M m,使得以MA,MB为邻边的四边形MATB是菱形,且点T在椭圆上若存在,求出m的值,若不存在,请说明理由精品资料-欢迎下载-欢迎下载 名师归纳-第 6 页,共 22 页 -文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W57 16.已知一个动圆与两个定圆41)2(22yx和449)2(22yx均相切,其圆心的轨迹为曲线C.(1)求曲线 C 的方程;(2)过点 F(0,2)做两条可相垂直的直线l1,l2,设 l1与曲线 C 交于 A,B 两点,l2与曲线 C交于 C,D 两点,线段AC,BD 分别与直线2x交于 M,N 两点。求证|MF|:|NF|为定值.17.已知椭圆 C:22221(0)xyabab的离心率为12,且过点(23,3),A,B 是椭圆C 上异于长轴端点的两点(1)求椭圆 C 的方程;(2)已知直线l:8x,且1AAl,垂足为 A1,1BBl,垂足为B1,若(3,0)D,且A1B1D 的面积是 ABD 面积的 5倍,求 ABD 面积的最大值精品资料-欢迎下载-欢迎下载 名师归纳-第 7 页,共 22 页 -文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W5文档编码:CM2U2M3H9K10 HA9C2S7A2H8 ZJ1B7Q9R4W58 试卷答案1.解:()1F(1,0),2F(1,0)()(i)当直线 AB 的斜率不存在时,由对称性可知m=0.(ii)当直线 AB 的斜率存在时,设直线AB 的斜率为 k,1122(,),(,)A xyB xy.由题意得121,1.xx直线 PA 的斜率为1111()11ymkxkmxx;直线2PF的斜率为2m;直线 PB的斜率为2222()11ymkxkmxx.由题意得1212()()()0121kxkmkxkmmxx.化简整理得1212(4)3()(45)0.(*)km x xm xxkm将直线 AB 的方程(1)yk x代