(完整word版)因式分解过关练习题及答案(2).pdf
-
资源ID:55055465
资源大小:32.59KB
全文页数:6页
- 资源格式: PDF
下载积分:4.3金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(完整word版)因式分解过关练习题及答案(2).pdf
因式分解专题过关1将下列各式分解因式(1)3p26pq(2)2x2+8x+8 2将下列各式分解因式(1)x3yxy(2)3a36a2b+3ab23分解因式(1)a2(xy)+16(yx)(2)(x2+y2)24x2y2 4分解因式:(1)2x2x(2)16x21(3)6xy29x2yy3(4)4+12(xy)+9(xy)2 5因式分解:(1)2am28a(2)4x3+4x2y+xy2 6将下列各式分解因式:(1)3x12x3(2)(x2+y2)24x2y2 7因式分解:(1)x2y2xy2+y3(2)(x+2y)2y2 8对下列代数式分解因式:(1)n2(m2)n(2m)(2)(x1)(x3)+1 9分解因式:a24a+4b210分解因式:a2b22a+1 11把下列各式分解因式:(1)x47x2+1(2)x4+x2+2ax+1a2(3)(1+y)22x2(1y2)+x4(1y)2(4)x4+2x3+3x2+2x+1 12把下列各式分解因式:(1)4x331x+15;(2)2a2b2+2a2c2+2b2c2a4b4c4;(3)x5+x+1;(4)x3+5x2+3x9;(5)2a4a3 6a2a+2文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4因式分解专题过关1将下列各式分解因式(1)3p26pq;(2)2x2+8x+8 分析:(1)提取公因式3p 整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解解答:解:(1)3p26pq=3p(p2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)22将下列各式分解因式(1)x3yxy(2)3a36a2b+3ab2分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可解答:解:(1)原式=xy(x21)=xy(x+1)(x1);(2)原式=3a(a22ab+b2)=3a(ab)23分解因式(1)a2(xy)+16(yx);(2)(x2+y2)24x2y2分析:(1)先提取公因式(xy),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解解答:解:(1)a2(xy)+16(y x),=(xy)(a216),=(xy)(a+4)(a4);(2)(x2+y2)24x2y2,=(x2+2xy+y2)(x22xy+y2),=(x+y)2(xy)24分解因式:(1)2x2x;(2)16x21;(3)6xy29x2yy3;(4)4+12(xy)+9(xy)2文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4分析:(1)直接提取公因式x 即可;(2)利用平方差公式进行因式分解;(3)先提取公因式y,再对余下的多项式利用完全平方公式继续分解;(4)把(xy)看作整体,利用完全平方公式分解因式即可解答:解:(1)2x2x=x(2x1);(2)16x21=(4x+1)(4x1);(3)6xy29x2y y3,=y(9x26xy+y2),=y(3xy)2;(4)4+12(xy)+9(xy)2,=2+3(xy)2,=(3x3y+2)25因式分解:(1)2am28a;(2)4x3+4x2y+xy2 分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解解答:解:(1)2am28a=2a(m24)=2a(m+2)(m2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)26将下列各式分解因式:(1)3x12x3(2)(x2+y2)24x2y2分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式解答:解:(1)3x12x3=3x(14x2)=3x(1+2x)(12x);(2)(x2+y2)24x2y2=(x2+y2+2xy)(x2+y22xy)=(x+y)2(xy)27因式分解:(1)x2y2xy2+y3;(2)(x+2y)2y2分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可解答:解:(1)x2y2xy2+y3=y(x22xy+y2)=y(xy)2;(2)(x+2y)2 y2=(x+2y+y)(x+2yy)=(x+3y)(x+y)文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H48对下列代数式分解因式:(1)n2(m2)n(2m);(2)(x 1)(x 3)+1分析:(1)提取公因式n(m2)即可;(2)根据多项式的乘法把(x1)(x3)展开,再利用完全平方公式进行因式分解解答:解:(1)n2(m 2)n(2m)=n2(m2)+n(m2)=n(m2)(n+1);(2)(x1)(x3)+1=x24x+4=(x2)29分解因式:a24a+4b2分析:本题有四项,应该考虑运用分组分解法观察后可以发现,本题中有a 的二次项a2,a 的一次项 4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解解答:解:a24a+4 b2=(a24a+4)b2=(a 2)2b2=(a2+b)(a2b)10分解因式:a2b22a+1 分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解本题中有a的二次项,a 的一次项,有常数项所以要考虑a22a+1 为一组解答:解:a2b22a+1=(a22a+1)b2=(a 1)2b2=(a1+b)(a1b)11把下列各式分解因式:(1)x47x2+1;(2)x4+x2+2ax+1a2(3)(1+y)22x2(1y2)+x4(1y)2(4)x4+2x3+3x2+2x+1 分析:(1)首先把 7x2变为+2x29x2,然后多项式变为x42x2+19x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1x2+2axa2,然后利用公式法分解因式即可解;(3)首先把 2x2(1 y2)变为 2x2(1 y)(1y),然后利用完全平方公式分解因式即可求解;文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4(4)首先把多项式变为x4+x3+x2+x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解解答:解:(1)x4 7x2+1=x4+2x2+1 9x2=(x2+1)2(3x)2=(x2+3x+1)(x23x+1);(2)x4+x2+2ax+1a=x4+2x2+1x2+2axa2=(x2+1)(x a)2=(x2+1+xa)(x2+1x+a);(3)(1+y)22x2(1y2)+x4(1y)2=(1+y)22x2(1y)(1+y)+x4(1y)2=(1+y)2 2x2(1y)(1+y)+x2(1y)2=(1+y)x2(1 y)2=(1+yx2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2+x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)212把下列各式分解因式:(1)4x331x+15;(2)2a2b2+2a2c2+2b2c2a4 b4c4;(3)x5+x+1;(4)x3+5x2+3x9;(文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4文档编码:CL10F2X1M8D5 HP1E9R7A4Q1 ZT6L10A3T5H4