(完整word版)高中数学立体几何重要知识点(经典),推荐文档.pdf
立体几何知识点1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c 为底面周长,h 为高,h为斜高,l 为母线)chS直棱柱侧面积rhS2圆柱侧21chS正棱锥侧面积rlS圆锥侧面积)(2121hccS正棱台侧面积lRrS)(圆台侧面积lrrS2圆柱表lrrS圆锥表22RRlrlrS圆台表(3)柱体、锥体、台体的体积公式VSh柱2VShr h圆柱13VSh锥hrV231圆锥1()3VSS SS h台2211()()33VSSSS hrrRRh圆台(4)球体的表面积和体积公式:V球=343R;S球面=24 R1、平面及基本性质公理 1 lBAlBlA,公理 2 若PP,则a且P公理 3 不共线三点确定一个平面(推论1 直线和直线外一点,2 两相交直线,3 两平行直线)2、空间两直线的位置关系共面直线:相交、平行(公理4)异面直线3、异面直线(1)对定义的理解:不存在平面,使得a且b(2)判定:反证法(否定相交和平行即共面)判定定理:15P(3)求异面直线所成的角:平移法即平移一条或两条直线作出夹角,再解三角形.向量法|,cos|cosbababa(注意异面直线所成角的范围2,0()(4)证明异面直线垂直,通常采用三垂线定理及逆定理或线面垂直关系来证明;向量法0baba(5)求异面直线间的距离:大纲仅要求掌握已给出公垂线或易找出公垂线的有关问题计算.9.2 直线与平面的位置关系1、直线与平面的位置关系Aaaa,/,2、直线与平面平行的判定(1)判定定理:/baabb(线线平行,则线面平行17P)(2)面面平行的性质:/aa (面面平行,则线面平行)3、直线与平面平行的性质babaa/,/(线面平行,则线线平行18P)4、直线与平面垂直的判定(1)直线与平面垂直的定义的逆用alal,文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10(2)判定定理:lAnmnmnlml,(线线垂直,则线面垂直23P)(3)abba/(25P练习第 6 题)(4)面面垂直的性质定理:alaal,(面面垂直,则线面垂直51P)(5)面面平行是性质:ll/5、射影长定理6、三垂线定理及逆定理线垂影线垂斜9.3 两个平面的位置关系1、空间两个平面的位置关系相交和平行2、两个平面平行的判定(1)判定定理:/,/,/Pbababa(线线平行,则面面平行19P)(2)/ll垂直于同一平面的两个平面平行(3)/,/平行于同一平面的两个平面平行(21P练习第 2 题)3、两个平面平行的性质(1)性质 1:/,/aa(2)面面平行的性质定理:baba/,/(面面平行,则线线平行20P)(3)性质 2:ll,/4、两个平面垂直的判定与性质(1)判定定理:aa,(线面垂直,则面面垂直50P)文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10(2)性质定理:面面垂直的性质定理:alaal,(面面垂直,则线面垂直51P)9.4 空间角1、异面直线所成角(9.1)2、斜线与平面所成的角)2,0((1)求作法(即射影转化法):找出斜线在平面上的射影,关键是作垂线,找垂足.(2)向量法:设平面的法向量为n,则直线AB与平面所成的角为,则|,cos|sinnABnABnAB)2,0((3)两个重要结论最小角定理48P:21coscoscos,,26P例 4 28P第 6 题9.5 空间距离1、求距离的一般方法和步骤(1)找出或作出有关的距离;(2)证明它符合定义;(3)在平面图形内计算(通常是解三角形)2、求点到面的距离常用的两种方法(1)等体积法构造恰当的三棱锥;(2)向量法求平面的斜线段,在平面的法向量上的射影的长度:|nnABd3、直线到平面的距离,两个平行平面的距离通常都可以转化为点到面的距离求解4、异面直线的距离定义:和两异面直线都垂直相交且夹在异面直线间的部分(公垂线段)求法:法1 找出两异面直线的公垂线段并计算,法2 转化为点面距离向量法|nnABd(A,B分别为两异面直线上任意一点,n为垂直于两异面直线的向量)注意理解应用:cos22222mndnml重点例题:51P和55P例 2 文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10文档编码:CN8V2K1F9X1 HB1G6W4X7N4 ZH4M3X6V1R10