(完整word版)必修四平面向量的数量积讲义.pdf
-
资源ID:55056345
资源大小:516.88KB
全文页数:9页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
(完整word版)必修四平面向量的数量积讲义.pdf
1 2.3 平面向量的数量积一、平面向量数量积1、定义:已知两个非零向量a与b,它们的夹角为,则数量ab cos叫做a与b的数量积(或内积),记作ab,即abab cos。注意:(1)两向量的数量积,其结果是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定;(2)两个向量的数量积是两个向量之间的一种乘法,与以前学过的数的乘法不同,“”不能省略,也不能也成“”;(3)在运用数量积公式时,一定要注意两个向量夹角的范围:00180 0。(4)规定:零向量与任一向量的数量积为0,即0b0;(5)当向量a与b的夹角为900时,叫a与b互相垂直,记作:ab,此时:abab0。2、平面向量数量积的几何意义:(1)对于abab cos,其中b cos叫做b在a方向上的投影,当为锐角时,投影为正;当为钝角时,投影为负;当就直角时,投影为0;当为 0 度时,投影是b;当为 180 度时,投影为b;(2)a在b方向上的投影与b在a方向上的投影就不同的;(3)a在b方向上的投影值可以写成bba。例 1:已知a 2,b 5,当(1)a与b夹角为 300时;(2)当ab时;(3)当当ab时;分别计算a与b的数量积。【解析】:(1)53;(2)0;(3)10 变式练习 1:已知a 3,b 5,且a与b的夹角为450,则a在b方向上的投影是()A:223B:3 C:4 D:5【解析】:A 2 变式练习 2:已知a 6,b 3,且ab 12,则a在b方向上的投影是()A:4 B:2 C:4 D:2【解析】:A 二、平面向量数量积的性质若a与b是非零向量,e是与a方向相同的单位向量,是e与a的夹角1、eaaeae cos2、abab0 3、若a与b同向,则abab(夹角为 0 度);若反向,则abab(夹角为 180度);特别地,aa(a)2a2或aaa4、若是a与b的夹角,则 cos baba5、abab(当a与b共线时取等号)三、平面向量数量积的运算律1、abba2、(a)b(ab)a(b)3、(ab)cacbc4、(ab)(ab)(a)2(b)2a2b25、(ab)2a2 2abb2 注意:(1)没有(ab)ca(bc)这个运算定律;(2)acbc,则不能得到ab;(3)若ab0,则a0或b0或900。例 2:下列说法正确的个数_。(1)两个向量的数量积是一个向量;(2)向量在另一个向量方向上的投影也是向量;(3)若ab 0,则a与b的夹角为锐角,若ab0,则a与b的夹角为钝角;(4)(ab)ca(bc);(5)若ab0,则a0或b0。【解析】:0 个文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U93 例 3:已知a与b的夹角为1200,且a 4,b 2,则计算(a2b)(ab)_,ab _。【解析】:12 23例 4:已知OAAB,OA 4,则OAOB_。【解析】:16 变式练习 1:已知a 1,ab21,(ab)(ab)21,求(1)a与b的夹角;(2)ab与ab的夹角的余弦值。【解析】:450,ab221,ab225,cos25212155。变式练习 2:已知向量a、b的夹角为 600,且a 2,b 1,则向量a与向量a2b的夹角等于()A:1500B:900C:600D:300【解析】:cosbaabaa2)2(300 可用数形结合法,构成的四边形为菱形变式练习 3:已知向量a与向量b满足,a 6,b 4,且a与b的夹角为600,求ab与a 3b。【解析】:ab 219,a3b 63变式练习 4:设四边形ABCD 为平行四边形,AB 6,AD 4,若点 M,N 满足BM3MC,DN2NC,则AMNM()A:20 B:15 C:9 D:6 解析】这个地方四边形ABCD 为平行四边形,可赋予此四边形为矩形,进而以A 为坐标原点建立坐标系。由0,06,34,4A(),M()N(),进而(6,3)AM,(2,1)NM,9AMNM。文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U94 变式练习 5:已知向量a与向量b是两个互相垂直的单位向量,若向量c满足(ac)(bc)0,则c的最大值是()A:1 B:2 C:2D:22【解析】:(ac)(bc)abacbcc20,则c2c(ab),则c4c(ab)2c2(a22abb2)2c2故c22。C 四、平面向量数量积的坐标表示、模、夹角设i,j为 x 轴、y 轴方向的两个单位向量,即i(1,0),j(0,1),且a与b为两个非零向量,a(x1,y1),b(x2,y2)1、ii1 jj1 ij0 abx1 x2y1y22、若a(x,y),则a222yx或a22yx。若 A(x1,y1),B(x2,y2),则AB212212)()(yyxx3、若a(x1,y1),b(x2,y2),则abab0 x1x2y1y20 文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U95 4、若a(x1,y1),b(x2,y2),a与b的夹角为,则 cos222221212121yxyxyyxx例 4:向量a(1,1),b(1,2),则a(2ab)()A:1 B:0 C:1 D:2【解析】:C 变式练习:若向量a(x,2),b(2,1),且ab,则ab()A:5B:10C:25D:10【解析】:B 例 5:若平面向量a(4,3),2ab(3,18),则a与b夹角的余弦值等于()A:658B:658C:6516D:6516【解析】:C 变式练习 1:设 x、yR,向量a(x,1),b(1,y),c(2,4),且ac,bc,则ab()A:5B:10C:25D:10【解析】:B 变式练习 2:已知a(,2),b(3,5),且a与b的夹角为锐角,则的取值范围是_。【解析】:由于 a 与 b 的夹角为锐角,a b0,且 a 与 b 不共线同向由a b0?3 100,解得 103.当向量 a 与 b 共线时,得5 6,得 65,因此 的取值范围是 103且 65.答案:|103且 65 变式练习 3:已知 A(3,0),B(0,3),C(cos,sin),O 为坐标原点。(1)若OCAB,求 tan;(2)若ACBC,求 sin2;(3)若OAOC13,且(0,),求OB与OC的夹角。【解析】:(1)1(2)98(3)6变式练习 4:已知a(53cosx,cosx),b(sinx,2cosx),设函数 f(x)ab2b23。(1)当 x6,2时,求函数f(x)的值域文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U96(2)当 x6,2时,若 f(x)8,求函数f(x12)的值(3)将函数 f(x)的图象向右平移12个单位长度后,再将得到的函数图象上各点的纵坐标向下平移 5 个单位长度,得到函数yg(x)的图象,求函数 yg(x)的表达式,并判断其奇偶性。【解析】:(1)f(x)5sin(2x6)5(2)22x667sin2x53cos2x54f(x 12)5sin2x55sin(2x66)21433(3)g(x)5sin2x 奇变式练习 5:a(3,1),b(21,23),且存在实数k 和 t,使ma(t23)b,n ka tb,且mn,试求ttk2的最大值。课 后 综 合 练 习文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U97 1、给出以下四个命题:(1)abab0;(2)若ab0,且a0,则b0;(3)若a0,b0,则abab;(4)当a与b反向时,abab。正确命题的个数是()A:1 B:2 C:3 D:4【解析】:B(3)应小于2、已知a(0,1),b(1,1),且(ab)a,则实数的值是()A:1 B:0 C:1 D:2【解析】:A 3、若a 3,b3,且a、b的夹角为6,则ab为()A:6B:23C:32D:21【解析】:D 4、设a、b、c是任意的非零平面向量,且相互不共线,则(1)(ab)c(ca)b0;(2)abab;(3)(bc)a(ca)b与c不垂直;(4)(3a2b)(3a2b)9a2 4b2中,是真命题的有()A:(1)(2)B:(2)(3)C:(3)(4)D:(2)(4)【解析】:D 5、如图所示,Rt ABC 中,A 900,AB 1,则ABBC的值是()A:1 B:1 C:2 D:2【解析】:B 6、ABC 中,ABa,BCb,若ab0,则 ABC 的形状为()A:直角三角形B:钝角三角形C:锐角三角形D:不能判断【解析】:B 7、已知a、b满足ab 2,ab0,若向量c与ab共线,则ac的最小值为()A:2B:1 C:22D:21【解析】:设a(2,0),b(0,2),cx(ab)(2x,2x),则ac224)22(xx4882xx2A CAB文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9文档编码:CM7C8W9R2E2 HP9I10V9U10C6 ZS8U5Z5E1U9