(完整word版)概率论与数理统计考试题及答案.pdf
一、填空题(每小题 3 分,共 30 分)1、“事 件,A B C中 至 少 有 一 个 不 发 生”这 一 事 件 可 以 表 示为.2、设()0.7,()0.3P AP AB,则()P AB_.3、袋中有 6个白球,5个红球,从中任取 3个,恰好抽到 2个红球的概率.4、设随机变量 X 的分布律为(),(1,2,8),8aP Xkk则a_.5、设随机变量 X 在(2,8)内服从均匀分布,则(24)PX.6、设随机变量 X 的分布律为2101181151 551 5kXp则2YX 的分布律是.7、设随机变量X 服从参数为的泊松分布,且已知,XXE1)2)(1(则.8、设129,XXX是来自正态总体(2,9)N的样本,X 是样本均植,则 X 服从的分布是.9、设总体10,Xbp,12,nXXX是来自总体 X 的样本,则参数 p的矩估计量为.10、设123,XXX是来自总体 X 的样本,12311?23XXX是()E X的无偏估计,则.二、(本题 12 分)甲乙两家企业生产同一种产品.甲企业生产的60 件产品中有 12件是次品,乙企业生产的 50 件产品中有 10 件次品.两家企业生产的产品混合在一起存放,现从中任取 1 件进行检验.求:(1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.三、(本题 12 分)设随机变量 X 的概率密度为,03()2,3420,kxxxf xx其它(1)确定常数 k;(2)求 X 的分布函数()F x;(3)求712PX.四、(本题 12 分)设二维随机向量(,)X Y的联合分布律为01210.10.20.120.10.2YXa试求:(1)a 的值;(2)X 与Y 的边缘分布律;(3)X 与Y 是否独立?为什么?五、(本题 12 分)设随机变量 X 的概率密度为,01,2,12,0,.xxfxxx其他求,E XD X.文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3六、(本题 12 分)设离散型随机变量X 的分布律为(),0,1,2,!xeP Xxxx,0其中为未知参数,nxxx,21为一组样本观察值,求的极大似然估计值.七、(本题 10 分)某种零件的尺寸方差为21.21,对一批这类零件检查6件得尺寸数据(毫米):32.56,29.66,31.64,30.00,21.87,31.03 设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05)?(附:0.0250.0250.0250.050.02552.5706,62.4469,72.3646,1.65,1.96,62.45tttzz文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3一、填空题(每小题 3 分,共 30 分)1、ABC或ABC2、0.6 3、2156311C CC或411或0.3636 4、1 5、136、2014131555kXp7、1 8、(2,1)N9、10X10、16二、(本题 12 分)甲乙两家企业生产同一种产品.甲企业生产的60 件产品中有 12件是次品,乙企业生产的 50 件产品中有 10 件次品.两家企业生产的产品混合在一起存放,现从中任取 1 件进行检验.求:(1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.解 设12,AA分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有12126 065 051 211 01(),(),(|),(|)1 1 01 11 1 01 16 055 05PAPAPBAPBA.2分(1)由全概率公式得112261511()()(|)()(|)1 151 155P BP AP BAP AP BA.7分(2)由贝叶斯公式得22251()()5115()1()115P A P B AP A BP B.12 分三、(本题 12 分)设随机变量 X 的概率密度为,03()2,3420,kxxxf xx其它(1)确定常数 k;(2)求 X 的分布函数()F x;(3)求712PX.解(1)由概率密度的性质知340391()21224xf x dxkxdxdxk故16k.3分(2)当0 x时,()()0 xF xf t dt;文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3当 03x时,2011()()612xxF xf t dttdtx;当 34x时,320311()()223624xxtF xf t dttdtdtxx;当4x时,34031()()2162xtF xf t dttdtdt;故 X 的分布函数为220,01,0312()123,3441,4xxxF xxxxx.9 分(3)77151411(1)22161248PXFF.12 分四、(本题 12 分)设二维随机向量(,)X Y的联合分布律为01210.10.20.120.10.2YXa试求:(1)a 的值;(2)X 和 Y的边缘分布律;(3)X 与Y 是否独立?为什么?解(1)由分布律的性质知0 1.0.20.10.10.a故0.3a.4分(2)(,)X Y分别关于 X 和 Y 的边缘分布律为0120.40.30.3Xp.6分120.40.6Yp.8分(3)由于0,10.1P XY,010.4 0.40.16P XP Y,故0,101PXYPXP Y所以 X 与 Y 不相互独立.12分五、(本题 12 分)设随机变量 X 的概率密度为,01,2,12,0,.xxfxxx其他求,E XD X.解2131223201011()()dd(2)d1.33xE Xxf xxxxxxxxx.6分文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3122232017()()dd(2)d6E Xx f xxxxxxx.9 分221()()().6D XE XE X.12 分六、(本题 12 分)设离散型随机变量X 的分布律为(),0,1,2,!xeP Xxxx,0其中为未知参数,nxxx,21为一组样本观察值,求的极大似然估计值.解 似然函数1111!niiixnnxniiiieLexx.4 分对数似然函数111lnlnln!nniiiiLnxx.6 分1ln Lniixdnd.8分解似然方程ln L0dd得11?niixxn.10 分所以的极大似然估计值为?.x.12 分七、(本题 10 分)某种零件的尺寸方差为21.21,对一批这类零件检查6件得尺寸数据(毫米):32.56,29.66,31.64,30.00,21.87,31.03 设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05)?(附:0.0250.0250.0250.050.02552.5706,62.4469,72.3646,1.65,1.96tttzz)解 总体2,XN,总体方差已知,检验总体期望值是否等于 32.50.(1)提出待检假设0010:32.50;:32.50.HH.1 分(2)选取统计量0/XZn,在0H成立的条件下(0,1)Z N.2分(3)对于给定的检验水平0.05,查表确定临界值/20.0251.96zz于是拒绝域为(,1.96)(1.96,).W.5 分(4)根据样本观察值计算统计量Z 的观察值:132.5629.6631.6430.0021.8731.0329.445,1.16x0029.44532.502.456.8041.1/xzn.8 分(5)判断:由于0zW,故拒绝 H0,即不能认为这批零件的平均尺寸是32.50 毫米.10分文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3文档编码:CR3J3D6T4A2 HH9A6B9H9E2 ZF8N7W4I1M3