(完整word版)泛函分析课程总结(word文档良心出品).pdf
泛函分析课程总结数学与计算科学学院09 数本 5 班符翠艳2009224524 序号:26 一知识总结第七章度量空间和赋范线性空间1.度量空间的定义:设 X 是一个集合,若对于 X 中任意两个元素,x y,都有唯一确定的实数,d x y 与之相对应,而且满足1,0,0=;2,;3,d x yd x yx yd x yd y xd x yd x zd z yz、的充要条件是、对任意 都成立。则称 d 为 X 上的一个度量函数,(dX,)为度量空间,),(yxd为yx,两点间的度量。2.度量空间的例子离散的度量空间,X d设 X 是任意的非空集合,对X 中任意两点,x yX,令1,0,xyd x yxy当当序列空间 S 令S表 示 实 数 列(或 复 数 列)的 全 体,对S 中 任 意 两 点12n12,.,.,.,.nxy及,令11,2 1iiiiiid x y有界函数空间 B(A)设 A 是一给定的集合,令B(A)表示 A 上有界实值(或复值)函数全体,对 B(A)中任意两点,x y,定义,()()suptAd x yx ty t可测函数空间 m(X)设 m(X)为 X 上实值(或复值)的 L 可测函数全体,m 为 L 测度,若 m X,对任意两个可测函数()()f tg t及,令()(),1()()Xf tg tdf gdtf tg t第 1 页,共 12 页,C a b 空间令,C a b 表示闭区间,a b 上实值(或复值)连续函数的全体,对,C a b 中任意两点,x y,定义,max()()a t bd x yx ty t2l空间记12kkkxxxl,设2kxxl,2ykyl,定义1221,()kkkd x yyx注:度量空间中距离的定义是关键。3.度量空间中的极限,稠密集,可分空间3.1 收敛点列和极限定义:设nx是,X d 中的点列,如果存在xX,使,0limnd xxn,则称点列nx是,X d 中的收敛点列,x是点列nx的极限。注:1.度量空间,X d 中的收敛点列的极限是唯一的。2.各个度量空间中各种极限概念不完全一致(依坐标收敛,一致收敛。依测度收敛等)3.2 度量空间中稠密子集和可分度量空间定义:设 X 是度量空间,E 和 M 是 X 中两个自己,令 M 表示 M 的闭包,如果 EM,那么称 M 在集 E 中稠密,当 E=X 时称 M 是 X 的一个稠密子集。如果 X 由一个可数的稠密子集,则称X 是可分空间。注:1.若 A 在 B 中稠密,B 在 C 中稠密,则 A 在 C 中稠密。2.欧氏空间 Rn、空间 Ca,b、空间pplbaL,是可分的。3.l不可分。4.完备度量空间4.1 柯西点列定义:设,XX d 是度量空间,nx是 X 中的点列,如果对任意给定的正数0,存在正整数()NN,使当 n,mN 时,必有第 2 页,共 12 页文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9文档编码:CP1L2G3U9Y5 HL6J4L9A5V3 ZL3W10S2D2G9,nmd xx则称nx是 X 中的柯西点列。那么称,X d 是完备的度量空间。4.2 完备度量空间的例子l是完备度量空间 C 是完备度量空间,a bC是完备度量空间4.3 定理的证明定理:完备度量空间X 的子空间 M 是完备空间的充要条件为M 是 X 中的闭子空间。证 明:设 M 是 完备 子 空 间,对 每 个 xM,存在 M 中 点 列nx,使()xx nn,由前述,nx是 M 中的柯西点列,所以在 M 中收敛,有极限的唯一性可知x M,即 MM,,所以 MM,因此 M 是 X 中的闭子空间。5.度量空间的完备化5.1 等距同构映射定义:设,X d,,X d是两个度量空间,如果存在 X 到X 上的保距映射 T,即,d Tx Tyd x y,则称,X d 和,X d等距同构,T 称为 X 到X 上的等距同构映射。5.2 度量空间的完备化定理定理:设(,)XX d是度量空间,那么一定都一定存在一个完备空间,X d,使 X 与X 的某个稠密子空间 W 等距同构。并且X 在等距同构的意义下时唯一的,即(,)X d也是一完备度量空间,且X 与X 的某个稠密子空间等距同构,则,X d与(,)X d等距同构。注:任一度量空间,X d 都存在唯一的完备度量空间,X d,使 X 为X 的稠密子空间。6.压缩映射第 3 页,共 12 页文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S96.1 压缩映射定义:设 X 是度量空间,T 是 X 到 X 中的映射,如果存在一个数,01,使得对所有的,x yX,,d Tx Tyd x y(1)则称 T 是压缩映射6.2 压缩映射定理定理:设 X 是完备的度量空间,T 是 X 上的压缩映射,那么T 有且只有一个不动点(就是说,方程 Txx,有且只有一个解)。证明:设0 x是 X 中任意一点,令10 xTx,221010,.,.nnnxTxT xxTxT x。我们证明点列nx是 X 中柯西点列,事实上,111,(,)mmmmmmd xxd Tx Txd xx21212(,)(,)mmmmd TxTxd xx(2)10.(,)md x x由三点不等式,当nm 时,1121(,)(,)(,).(,)mnmmmmnnd xxd xxd xxd xx1101(.)(,)mmnd xx011(,).1n mmd xx?因 01,所以11n m,于是得到01(,)(,)1mmnd xxd xx(nm)(3)所以当,mn时,(,)0mnd xx,即nx是 X 中柯西点列,由X 完备,存在 xX,使()mxx m,又由三点不等式和条件(1),我们有1(,)(,)(,)(,)(,).mmmmd x Txd x xd xTxd x xd xx上面不等式右端当m时趋于 0,所以(,)0,d x Tx即Txx第 4 页,共 12 页文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9下证唯一性。如果又有,xX使T xx,则由条件(1),(,)(,)(,).d x xd Tx T xd x x因1,所以必有(,)0d x x,即xx。注:1.X 是完备的度量空间2.T 是压缩映射3.压缩定理可以推导出隐函数存在定理4.压缩映射原理可以证明常微分方程解得存在性和唯一性定理7.赋范线性空间和巴拿赫空间7.1 赋范线性空间定义:设 X 是实(或复)的线性空间,如果对每个向量xX,有一个确定的实数,记为x 与之对应,并满足1.0,00;2.,3.,.xxxxxxyxyx yX且等价于其中为任意实(复)数;则称 x 为向量x的范数,称 X 按范数 x 成为赋范线性空间。设nx是 X 中点列,如果存在 xX,使0()nxxn,则称nx依范数收敛于x,记为()limnnnxx nxx或。如果令(,)d x yxy(,)x yX即nx依范数收敛于x等价于nx按距离(,)d x y收敛于x,称(,)d x y为由范数x 导出的距离。注:完备的赋范线性空间称为巴拿赫空间7.2 几种常见的巴拿赫空间欧式空间nR对每一个12,.,nnxR,定义范数222.12nx(1)又因nR 完备,x 是nR 中范数。故nR 按(1)式中范数成为巴拿赫空间。空间,C a b第 5 页,共 12 页文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9对每一个,C a bx,定义max()a t bxx t(2),C a b 按(2)式中的范数成为巴拿赫空间。空间l对每一个12,.,xl,定义supjjx(3)l按(3)式中的范数成为巴拿赫空间。空间,pLa b(1)p对于每个,pfLa b,定义1()bpppaff tdt(4),pLa b(1)p按(4)式中的范数成为巴拿赫空间。空间pl对每一个12,.,plx,定义111pppix(5)pl按(5)式中的范数成为巴拿赫空间。7.3 两个重要的不等式和两条定理(1)霍尔德不等式设111,1,ppgpqpfLa bLa b,那么()()f t g t在,a b上L 可积,并且()()bpqaf t g t dtfg(2)闵可夫斯基不等式设1p,,pf gLa b,那么,pfgLa b,并且成立不等式第 6 页,共 12 页文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9()()pppf tg tfg定理 1:当1p时,,pLa b按(4)式中范数pf成为赋范线性空间。定理 2:,pLa b(1)p是巴拿赫空间7.4 有限维赋范线性空间的性质定理 3:设X是 n 维赋范线性空间,12,.,ne ee是X的一组基,则存在常数M 和M,使得对一切1kkkxe,有1221()nkkMxMx推论 1:设在有限维线性空间上定义了两个范数x 和1x,那么必存在常数M和M,使得1M xxxM拓扑同构的定义:设11,Rx和22,Rx是两个赋范线性空间。如果存在从1R到2R上的线性映射和正数1c,2c,使得对一切1xR,有21212xxxcc则称11,Rx和22,Rx是两个赋范线性空间是拓扑同构推论 2:任何有限维赋范空间都和同维数欧式空间拓扑同构,相同维数的有限维赋范空间彼此拓扑同构。8.度量空间、赋范线性空间、巴拿赫空间的区别与联系赋范线性空间一定是度量空间,反之不一定成立。度量空间按照加法和数乘运算成为线性空间,而且度量空间中的距离如果是由范数导出的,那么这个度量空间就是赋范线性空间。赋范线性空间与巴拿赫空间的联系与区别:完备的赋范线性空间是巴拿赫空间。巴拿赫空间一定是赋范线性空间,反之不一定成立。巴拿赫空间一定是度量空间,反之不一定成立。巴拿赫空间满足度量空间的所有性质。巴拿赫空间由范数导出距离,而且满足加法和数乘的封闭性。满足完备性,则要求每个柯西点列都在空间中收敛。度量空间中距离要满足三个性质:非负线性、对称性、三点不等式,因此距离),(yxd的定义是重点。赋范线性空间中范数要满足:非负性、线性性、三角不第 7 页,共 12 页文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码:CB5P10S1P5O3 HG7X8H3M9S2 ZF6V6G9T2S9文档编码: