10-11高数C(2)期中试卷()答案.pdf
2010-2011 高等数学 C(二)期中考试试卷(答案)姓名学号班级成绩注:该试卷中含有微分方程的题目,不属于本次期中考试内容。一、选择填空题(每空3 分,共 36 分)1、300ln(1)limsinxxtdttxx=2 ;解:上式=22/limcos1)1ln(lim22030 xxxxxxx等价无穷小代换2、曲线1yx与直线,2yx y所围的平面图形的面积为2ln23解:积分区域yxyyD121:,所以所求面积dyyyS)1(212ln233、121sinxxdx=0 ;解:奇函数在对称区间上的定积分 为零4、已知函数()f x可导,(1)2f,10()5fx dx,则10()xfx dx=3解:根据分部积分:10()xfx dx352)()()(101010dxxfxxfxxdf5、已知22123,xxxxxxxyxeeyxeeyxeee是某二阶线性非齐次微分方程的三个解,则该方程的通解为,该微分方程对应的二阶线性齐次微分方程为。6、方程2214yx所表示的曲面类型是椭圆柱面;7、设22(,)f uv uvvu,则(,)f x y=xy8、二重极限22(,)(0,0)limx yxyxy不存在;解:由于2222001limkkxkxkxxkxyx,与k有关,所以极限不存在9、函数(,)zf x y在点(,)P x y偏导数存在是函数在该点连续的 D ;A 充分非必要条件 B 必要非充分条件 C 充要条件 D 无关条件10、二元函数sin,0,R(,)20,0Rxyxyf x yxxy,则(0,3)xf不存在解:(0,3)xfxxxxfxfxx023sinlim)3,0()3,(lim0011、设函数2xzy,则全微分dz=dyxyydxyxx1222ln2解:dyxyydxydzxx1222ln2二、计算题(共52 分)1、(6 分)计算0314xdxx解:被积函数在积分区域上连续所以0314xdxx2ln32332124dttttx2、(6 分)计算222|2xxdxx解:利用定积分的奇偶性222|2xxdxx3ln)2ln(222202202222xdxxxdxxx3、(6 分)计算401xdxx解:401xdxx4arctan21)(121020222xxdx 4、(6 分)计算1sin(ln)ex dx文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1解:1sin(ln)ex dx101010lncos)sin(sintdtetedetttttx101010sincos1sincos1sintdteteetdeettt所以1sin(ln)ex dx)11cos1sin(21ee5、(6 分)求微分方程12sin,()xyyx y的特解6、(6 分)求微分方程ln0dyxyydx的通解。7、(8 分)设(ln,),zfx xy其中(,)f u v具有两阶连续偏导数,求2zx y解:yfxfzx211)0()0(1222121211xffyfxffxzxy22212fyxff8、(8 分)设三元方程zxxyze确定两元隐函数(,)zz x y,求,zzxy解:令xzexyzzyxF),(,xzzyxzxexyFxzFeyzF,所以:xzyxzxzzxxexyxzzexyeyzFFz,三、(共 8 分)当a取何值时,曲线2yx与直线,1xa xa及x轴所围平面图形面积最小;并求上述面积最小的平面图形绕y轴旋转所得旋转体体积。解:)1(31)(3312aadxxaSaa210)1()(22aaaaS方法一:32)(41)21(24/102dyyV方法二:3222/102dxxxV文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1四、设()f x可导,且20()2xxtf xfdte,求()f x。(4 分)解:等式两边对x求导:xexfxf)(2)(,再解此微分方程文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1文档编码:CA4T5V6D5G2 HL2C2V3H2M4 ZP6Y1K4G10S1