欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2.3幂函数导学案.pdf

    • 资源ID:55058538       资源大小:191.52KB        全文页数:6页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2.3幂函数导学案.pdf

    第1页第二章基本初等函数课题:2.3 幂函数班级:姓名:问题生成评价单1.幂函数的概念一般地,形如 _(R)的函数称为幂函数(power function),其中是自变量,是常数。2、五个具体幂函数的图象与性质当=1,2,3,12,-1 时,在同一平面直角坐标系内作出这五个幂函数的图象,如图 2-3-1 所示。观察图象可以得到幂函数的特征如下:第2页由以上特征可以得到上述幂函数的性质如下:(1)在区间(0,+)上都有定义,并且图象都通过点(1,1)。(2)如果 0,则幂函数的图象通过原点,并且在区间0,+上是增函数。(3)如果 0,则幂函数在区间(0,+)上是减函数,在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴;当 x 趋于+时,图象在 x 轴上方无限地逼近x 轴。问题解决评价单文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2第3页典例 1(原创题)已知幂函数y=(m2 m-1)223mmx,求此幂函数的解析式,并指出定义域。拓展变式 1 已知函数2211(22)mymmx+2n-3 是幂函数,求,m n的值。典例 2 比较下列各题中两个幂的值的大小:(1)33442.3,2.4;(2)3322(2),(3);(3)6655(0.31),0.35拓展变式2 比较下列各题中两个幂的值的大小:(1)33552.1,;(2)1133(2),(1.4);(3)445523(),()34典例 3 已知函数 y=xa,y=xb,y=xc 的图象如图 2-3-2 所示,则 a、b、c 的大小关系为文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2第4页Acba B.abc C.bca D.ca0 Ba0 Ca=0 D不能确定3若11221.1,0.9ab,那么下列不等式成立的是()Aal bB1abCb laD1b 1 Bm1 Cm=l D不能确定5若点,A a b 在幂函数nyxnQ 的图象上,那么下列结论中不能成立的是()A00abB00ab00abD00ab6、使23xx成立的x的取值范围是()A、x1 且 x0B、0 x1 C、x1 D、x1 7、若四个幂函数 yax,ybx,ycx,ydx在同一坐标系中的图象如右图,则a、b、c、d的大小关系是()A、dcbaB、abcdC、dcabD、abdc8函数3xy和31xy图象满足()A关于原点对称B关于x轴对称C关于 y 轴对称D关于直线xy对称文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2第6页9、若21)1(a21)23(a,则 a 的取值范围是 _;10下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.6543212132323123xyxyxyxyxyxy);();()(;);();()(A)(B)(C)(D)(E)(F)11、已知幂函数 f(x)23221ppx(pZ)在(0,)上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f(x)。【未解决问题】自我评价同伴评价学科长评价小组长评价学术助理评价1、完成单子情况2、主动帮助同伴3、主动展讲4、主动补充与质疑5、纪律情况文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2文档编码:CV8I1G9F4H8 HA3J4O8P5U9 ZQ9F2F7R8C2

    注意事项

    本文(2.3幂函数导学案.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开