欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    1.1.3导数的几何意义教案.pdf

    • 资源ID:55059984       资源大小:288.21KB        全文页数:5页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.1.3导数的几何意义教案.pdf

    1.1.3导数的几何意义教学目标1了解平均变化率与割线斜率之间的关系;2理解曲线的切线的概念;3通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;教学难点:导数的几何意义教学过程:一创设情景(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数0()fx的几何意义是什么呢?二新课讲授(一)曲线的切线及切线的斜率:如图 3.1-2,当(,()(1,2,3,4)nnnP xf xn沿着曲线()f x趋近于点00(,()P xf x时,割线nPP的变化趋势是什么?我们发现,当点nP沿着曲线无限接近点P即x0 时,割线nPP趋近于确定的位置,这个确图 3.1-2 定位置的直线PT称为曲线在点P处的 切线.问题:割线nPP的斜率nk与切线PT的斜率k有什么关系?切线PT的斜率k为多少?容易知道,割线nPP的斜率是00()()nnnf xf xkxx,当点nP沿着曲线无限接近点P时,nk无限趋近于切线PT的斜率k,即0000()()lim()xf xxf xkfxx说明:(1)设切线的倾斜角为,那么当 x0 时,割线 PQ的斜率,称为曲线在点P处的切线的斜率.这个概念:提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质函数在0 xx处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点00(,()xfx处的切线的斜率,即0000()()()limxf xxf xfxkx说明:求曲线在某点处的切线方程的基本步骤:求出P点的坐标;求 出 函 数 在 点0 x处 的 变 化 率0000()()()limxf xxf xfxkx,得 到 曲 线 在 点00(,()xf x的切线的斜率;利用点斜式求切线方程.(二)导函数:由函数f(x)在x=x0处求导数的过程可以看到,当时,0()fx是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:()fx或y,即:0()()()limxf xxf xfxyx注:在不致发生混淆时,导函数也简称导数(三)函数()f x在点0 x处的导数0()fx、导函数()fx、导数之间的区别与联系。1)函数在一点处的导数0()fx,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数3)函数()f x在点0 x处的导数0()fx就是导函数()fx在0 xx处的函数值,这也是求函数文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3在点0 x处的导数的方法之一。三典例分析例 1:(1)求曲线y=f(x)=x2+1 在点P(1,2)处的切线方程.(2)求函数y=3x2在点(1,3)处的导数.解:(1)222100(1)1(11)2|limlim2xxxxxxyxx,所以,所求切线的斜率为2,因此,所求的切线方程为22(1)yx即20 xy(2)因为2222111133 13(1)|limlimlim3(1)611xxxxxxyxxx所以,所求切线的斜率为6,因此,所求的切线方程为36(1)yx即630 xy(2)求函数f(x)=xx2在1x附近的平均变化率,并求出在该点处的导数解:xxxxxy32)1()1(2200(1)(1)2(1)limlim(3)3xxyxxfxxx例 2(课本例2)如图 3.1-3,它表示跳水运动中高度随时间变化的函数2()4.96.510h xxx,根据图像,请描述、比较曲线()h t在0t、1t、2t附近的变化情况解:我们用曲线()h t在0t、1t、2t处的切线,刻画曲线()h t在上述三个时刻附近的变化情况(1)当0tt时,曲线()h t在0t处的切线0l平行于x轴,所以,在0tt附近曲线比较平坦,几乎没有升降(2)当1tt时,曲线()h t在1t处的切线1l的斜率1()0h t,所以,在1tt附近曲线下降,即函数2()4.96.510h xxx在1tt附近单调递减(3)当2tt时,曲线()h t在2t处的切线2l的斜率2()0h t,所以,在2tt附近曲线下降,文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3即函数2()4.96.510h xxx在2tt附近单调递减从图 3.1-3 可以看出,直线1l的倾斜程度小于直线2l的倾斜程度,这说明曲线在1t附近比在2t附近下降的缓慢例 3(课本例3)如图 3.1-4,它表示人体血管中药物浓度()cf t(单位:/mg mL)随时间t(单位:min)变化的图象根据图像,估计0.2,0.4,0.6,0.8t时,血管中药物浓度的瞬时变化率(精确到0.1)解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度()f t在此时刻的导数,从图像上看,它表示曲线()f t在此点处的切线的斜率如图 3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值作0.8t处的切线,并在切线上去两点,如(0.7,0.91),(1.0,0.48),则它的斜率为:0.480.911.41.00.7k所以(0.8)1.4f下表给出了药物浓度瞬时变化率的估计值:t0.2 0.4 0.6 0.8 药物浓度瞬时变化率()ft0.4 0-0.7-1.4 四课堂练习1求曲线y=f(x)=x3在点(1,1)处的切线;2求曲线yx在点(4,2)处的切线五回顾总结1曲线的切线及切线的斜率;文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O32导数的几何意义六布置作业文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3文档编码:CL1K7X5O3K10 HI10C9Y10Z8W5 ZU4U4C9J5O3

    注意事项

    本文(1.1.3导数的几何意义教案.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开