欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《变化率问题教学》PPT课件.ppt

    • 资源ID:55132183       资源大小:537KB        全文页数:16页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《变化率问题教学》PPT课件.ppt

    人教版选修人教版选修人教版选修人教版选修1-11-1第一章导数及其应用第第一章导数及其应用第第一章导数及其应用第第一章导数及其应用第1 1节变化率与导数节变化率与导数节变化率与导数节变化率与导数通过阅读引言我们知道:1.随着对函数的深入研究产生了微积分随着对函数的深入研究产生了微积分,它是数学发它是数学发展史上的一个具有划时代意义的伟大创造,被誉为展史上的一个具有划时代意义的伟大创造,被誉为数学史上的里程碑数学史上的里程碑.微积分的创立者是牛顿和莱布尼茨微积分的创立者是牛顿和莱布尼茨.他们都是著名的科学家,我们应该认识一下.牛顿(牛顿(Isacc Newton,1642 -1727)Isacc Newton,1642 -1727)是英国数学是英国数学家、天文学家和物理学家家、天文学家和物理学家是世界上出类拔萃的科学家。是世界上出类拔萃的科学家。莱布尼茨莱布尼茨(1646-1716)德国数学家、哲德国数学家、哲学家,和牛顿同为微积分的创始人学家,和牛顿同为微积分的创始人.3.本章我们将要学习的导数是微积分本章我们将要学习的导数是微积分的核心概念之一的核心概念之一.打个比喻如果微积分是万丈高楼,打个比喻如果微积分是万丈高楼,那么平均变化率就是地基那么平均变化率就是地基.那么我们这一节课就相当于是那么我们这一节课就相当于是“地基地基”.现在我们就开始现在我们就开始“打造地基打造地基”第一次第二次dmdm观察小新接连两次观察小新接连两次吹气球时,吹气球时,气球的膨胀程度。气球的膨胀程度。问题一问题一:气球膨胀率气球膨胀率 气球的体积气球的体积V(V(单位单位:L):L)与半径与半径r r(单位单位:dm):dm)之间的函数关系是之间的函数关系是 如果将半径如果将半径r r表示为体积表示为体积V V的函数的函数,那么那么 这是一段吹气球的视频,细细体会气球这是一段吹气球的视频,细细体会气球的膨胀过程,你有什么发现?的膨胀过程,你有什么发现?问题一问题一 气球膨胀率气球膨胀率 随着气球内空随着气球内空气容量的增加气容量的增加,气球的半径增加得越来越慢气球的半径增加得越来越慢.怎样从数学角度描述这种现象呢怎样从数学角度描述这种现象呢?操作操作 验证验证可见可见 随着气球体积逐渐变大随着气球体积逐渐变大,气球的平均膨胀率气球的平均膨胀率逐渐变小。逐渐变小。请用用一句话描述得到的结论请用用一句话描述得到的结论这就说明这就说明:当空气容量从当空气容量从V1增加到增加到V2时时,气球的气球的平均膨胀率是多少平均膨胀率是多少?思考思考问题2 高台跳水 在在高高台台跳跳水水运运动动中中,运运动动员员相相对对于于水水面面的的高高度度 h(单单位位:m)与与起起跳跳后后的的时时间间 t(单单位位:s)存存在在函函数数关系关系:问题问题2 高台跳水高台跳水 在高台跳水运动中在高台跳水运动中,运动员相对于水面的高度运动员相对于水面的高度 h(单位单位:m)与起跳后的时间与起跳后的时间 t(单位单位:s)存在函数关系存在函数关系 如果用运动员在某段时间内的平均速度如果用运动员在某段时间内的平均速度 描述其运描述其运动状态动状态,那么那么:在在0 t 这段时间里这段时间里,在在1 t 2这段时间里这段时间里,平均速度不能反映他在这段时间里运动状态,需要用瞬时速度描述运动状态。计算运动员在计算运动员在 这段时间里的平均速度这段时间里的平均速度,并并思考下面的问题思考下面的问题:(1)运动员在这段时间里是静止的吗运动员在这段时间里是静止的吗?探探 究究thO(2)你认为用平均速度描述运动员的运动状态有什么你认为用平均速度描述运动员的运动状态有什么问题吗问题吗?平均变化率平均变化率:式子式子 令令x=x2 x1,y=f(x2)f(x1),则则称为函数称为函数 f(x)从从x1到到 x2的平均变化率的平均变化率.平均变化率的定义:1、式子中式子中x、y 的值可正、可负,但的值可正、可负,但 的的x值不能为值不能为0,y 的值可以为的值可以为02、若函数、若函数f(x)为常函数时,为常函数时,y=0 理理解解3、变式变式:观察函数观察函数f(x)的图象的图象平均变化率平均变化率表示什么表示什么?思考xyoBx2f(x2)Ax1f(x1)f(x2)-f(x1)x2-x1直线AB的斜率y=f(x)例例 (1)计算函数计算函数 f(x)=2 x+1在区间在区间 3,1上的平均变化率上的平均变化率;(2)求函数求函数f(x)=x2+1的平均变化率。的平均变化率。(1)解:解:y=f(-1)-f(-3)=4 (2)解:解:y=f(x+x)-f(x)=2 x x+(x)2 x=-1-(-3)=2练习1.已知函数已知函数f(x)=-x2+x的图象上的一点的图象上的一点A(-1,-2)及及临近一点临近一点B(-1+x,-2+y),则则y/x=(D)A.3 B.3x-(x)2 C.3-(x)2 D.3-x l2、求、求y=x2在在x=x0附近的平均变化率附近的平均变化率.2x0+x 小结:小结:1.函数的平均变化率函数的平均变化率l2.求函数的平均变化率的步骤求函数的平均变化率的步骤:(1)求函数的增量:求函数的增量:y=f(x2)-f(x1);(2)计算平均变化率:计算平均变化率:

    注意事项

    本文(《变化率问题教学》PPT课件.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开