《数列及其应用》PPT课件.ppt
高三专题复习高三专题复习:数列及其应用数列及其应用一、基本概念:一、基本概念:一、基本概念:一、基本概念:二、基本公式:二、基本公式:二、基本公式:二、基本公式:四、数列求和其他方法四、数列求和其他方法三、三、有关等差、等比数列的结论有关等差、等比数列的结论 五、数列实际应用五、数列实际应用一、基本概念:一、基本概念:一、基本概念:一、基本概念:1.1.1.1.数列的定数列的定数列的定数列的定义义义义及表示方法:及表示方法:及表示方法:及表示方法:2.2.2.2.数列的数列的数列的数列的项项项项与与与与项项项项数:数:数:数:3.3.3.3.有有有有穷穷穷穷数列与无数列与无数列与无数列与无穷穷穷穷数列:数列:数列:数列:4.4.4.4.递递递递增(减)、增(减)、增(减)、增(减)、摆动摆动摆动摆动、循、循、循、循环环环环数列:数列:数列:数列:5.5.5.5.数列数列数列数列aaaan nn n 的通的通的通的通项项项项公式公式公式公式a a a an nn n:6.6.6.6.数列的前数列的前数列的前数列的前n n n n项项项项和公式和公式和公式和公式S S S Sn nn n:7.7.7.7.等差数列、公差等差数列、公差等差数列、公差等差数列、公差d d d d、等差数列的、等差数列的、等差数列的、等差数列的结结结结构:构:构:构:8.8.8.8.等比数列、公比等比数列、公比等比数列、公比等比数列、公比q q q q、等比数列的、等比数列的、等比数列的、等比数列的结结结结构:构:构:构:9.9.9.9.无无无无穷递缩穷递缩穷递缩穷递缩等比数列的意等比数列的意等比数列的意等比数列的意义义义义及公比及公比及公比及公比q q q q的取的取的取的取值值值值范范范范围围围围:二、基本公式:二、基本公式:1.1.一般数列的通一般数列的通一般数列的通一般数列的通项项项项a ann与前与前与前与前n n项项项项和和和和S Snn的关系:的关系:的关系:的关系:a ann=2.等差数列的通等差数列的通项项公式:公式:an=a1+(n-1)d an=ak+(n-k)d (其中其中a1为为首首项项、ak为为已知的第已知的第k项项)当当d0时时,an是关于是关于n的一次式;当的一次式;当d=0时时,an是一个常数。是一个常数。3.等差数列的前等差数列的前n项项和公式:和公式:S Sn n=S Sn n=S Sn n=当当当当d0d0时时时时,S Snn是关于是关于是关于是关于n n的二次式且常数的二次式且常数的二次式且常数的二次式且常数项为项为项为项为0 0;当;当;当;当d=0d=0时时时时(a a1100),),),),S Snn=na=na11是关于是关于是关于是关于n n的正的正的正的正比例式。比例式。比例式。比例式。4.4.等差数列的通等差数列的通等差数列的通等差数列的通项项项项a an n与前与前与前与前n n项项项项和和和和S Sn n的关系:的关系:的关系:的关系:a an n=5.5.等差中等差中等差中等差中项项项项公式:公式:公式:公式:(有唯一的(有唯一的(有唯一的(有唯一的值值值值)A=A=6.等比数列的通等比数列的通项项公式:公式:an=a1 qn-1 an=ak qn-k (其中其中a1为为首首项项、ak为为已知的第已知的第k项项,an0)7.等比数列的前等比数列的前n项项和公式:当和公式:当q=1时时,Sn=n a1 (是关于是关于n的正比例式的正比例式);当;当q时时,S Sn n=Sn=8.等比中等比中项项公式:公式:(ab0,有两个,有两个值值)G=2.等差数列等差数列an中,若中,若m+n=p+q,则则三、有关等差、等比数列的三、有关等差、等比数列的结论结论1.等差数列等差数列an的任意的任意连续连续m项项的和构成的和构成的数列的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、仍仍为为等差数列。等差数列。3.等比数列等比数列an中,若中,若m+n=p+q,则则4.等比数列等比数列an的任意的任意连续连续m项项的和构成的的和构成的数列数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、仍仍为为等比数列。等比数列。5.两个等差数列两个等差数列an与与bn的和差的数列的和差的数列an+bn、an-bn仍仍为为等差数列。等差数列。6.两个等比数列两个等比数列an与与bn的的积积、商、商、倒数的数列倒数的数列an bn 、仍仍为为等比数列。等比数列。7.等差数列等差数列an的任意等距离的的任意等距离的项项构成构成的数列的数列仍仍为为等差数列。等差数列。8.等比数列等比数列an的任意等距离的的任意等距离的项项构成的构成的数列数列仍仍为为等比数列。等比数列。9.三个数成等差的三个数成等差的设设法:法:a-d,a,a+d;四个;四个数成等差的数成等差的设设法:法:a-3d,a-d,a+d,a+3d 10.三个数成等比的三个数成等比的设设法:法:a/q,a,aq;四个;四个数成等比的数成等比的错误错误设设法:法:a/q3,a/q,aq,aq3 (为为什么?什么?)11.an为为等差数列,等差数列,则则(c0)是等比数列。是等比数列。12.bn(bn0)是等比数列,)是等比数列,则则logcbn(c0且且c 1)是等差数列。是等差数列。四、数列求和其他方法四、数列求和其他方法1.拆拆项项法求数列的和,如法求数列的和,如an=2n+3n 2.错错位相减法求和,如位相减法求和,如an=(2n-1)2n3.分裂分裂项项法求和,如法求和,如an=1/n(n+1)4.反序相加法求和,如反序相加法求和,如an=5.求数列求数列an的最大、最小的最大、最小项项的方法:的方法:如an=-2n2+29n-3aan+1n+1-a-an n=(an0)如如an=an=f(n)研究函数研究函数f(n)的增减性的增减性 如如an=五、数列实际应用五、数列实际应用 例例例例题题题题1.1.从盛从盛从盛从盛满满满满a a升升升升(a a1)1)纯纯纯纯酒精的容器里倒出一升酒精酒精的容器里倒出一升酒精酒精的容器里倒出一升酒精酒精的容器里倒出一升酒精,然然然然后用水填后用水填后用水填后用水填满满满满后后后后搅搅搅搅匀匀匀匀,再倒出一升混合溶液后再用水填再倒出一升混合溶液后再用水填再倒出一升混合溶液后再用水填再倒出一升混合溶液后再用水填满满满满,如如如如此此此此继续进继续进继续进继续进行下去行下去行下去行下去.(1)(1)每次用水填每次用水填每次用水填每次用水填满满满满后的酒精后的酒精后的酒精后的酒精浓浓浓浓度是否依次成等差数列或度是否依次成等差数列或度是否依次成等差数列或度是否依次成等差数列或等比数列等比数列等比数列等比数列?试证试证试证试证明你的明你的明你的明你的结论结论结论结论.(2)(2)若若若若a a=2,=2,至少倒几次后至少倒几次后至少倒几次后至少倒几次后(每次倒每次倒每次倒每次倒过过过过后都用水加后都用水加后都用水加后都用水加满搅满搅满搅满搅匀匀匀匀)才能使酒精才能使酒精才能使酒精才能使酒精浓浓浓浓度低于度低于度低于度低于1010?例例题题2.资资料表明料表明,2000年我国荒漠化土地占国土年我国荒漠化土地占国土陆陆地地总总面面积积960万平方公里的万平方公里的17,近二十年来近二十年来,我国荒漠化土我国荒漠化土地每年以地每年以2460平方公里的速度平方公里的速度扩扩展展,若若这这二十年二十年间间我国我国治理荒漠化土地的面治理荒漠化土地的面积积占前一年荒漠化土地面占前一年荒漠化土地面积积的的1,试问试问:二十年前我国荒漠化土地的面二十年前我国荒漠化土地的面积积有多少平方公里有多少平方公里?(精确到精确到1平方公里平方公里.)例例例例题题题题3.3.某某某某单单单单位用分期付款的方式位用分期付款的方式位用分期付款的方式位用分期付款的方式为职为职为职为职工工工工购买购买购买购买4040套住房套住房套住房套住房,共需共需共需共需11501150万元万元万元万元.购买购买购买购买当天先付当天先付当天先付当天先付150150万元万元万元万元,以后每月以后每月以后每月以后每月这这这这一天一天一天一天都交付都交付都交付都交付5050万元万元万元万元,并加付欠款利息并加付欠款利息并加付欠款利息并加付欠款利息,月利率月利率月利率月利率1 1.(1)(1)(1)(1)若交付若交付若交付若交付150150150150万元后的第一个月算开始分期付款的第一万元后的第一个月算开始分期付款的第一万元后的第一个月算开始分期付款的第一万元后的第一个月算开始分期付款的第一个月个月个月个月,问问问问分期付款的第十个月分期付款的第十个月分期付款的第十个月分期付款的第十个月应该应该应该应该付多少付多少付多少付多少钱钱钱钱?(2)(2)(2)(2)全部款全部款全部款全部款项项项项付清后付清后付清后付清后,买这买这买这买这40404040套住房套住房套住房套住房实际实际实际实际花了多少花了多少花了多少花了多少钱钱钱钱?