2018年上海市普陀区高三二模数学卷(含答案).pdf
-1-2017学年第二学期普陀区高三数学质量调研 2018.4 考生注意:1.本试卷共 4 页,21道试题,满分 150分.考试时间 120分钟.2.本考试分试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有 12 题,满分 54 分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前 6 题得 4 分、后 6 题得 5 分,否则一律得零分.1.抛物线212xy的准线方程为_.2.若函数1()21f xxm是奇函数,则实数m _.3.若函数()23f xx的反函数为()g x,则函数()g x的零点为_.4.书架上有上、中、下三册的白话史记和上、下两册的古诗文鉴赏辞典,现将这五本书从左到右摆放在一起,则中间位置摆放中册白话史记的不同摆放种数为_(结果用数值表示).5.在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,若222()tanbcaAbc,则角A的大小为_.6.若321()nxx的展开式中含有非零常数项,则正整数n的最小值为_.7.某单位年初有两辆车参加某种事故保险,对在当年内发生此种事故的每辆车,单位均可获赔(假设每辆车最多只获一次赔偿).设这两辆车在一年内发生此种事故的概率分别为120和121,且各车是否发生事故相互独立,则一年内该单位在此种保险中获赔的概率为_(结果用最简分数表示).8.在平面直角坐标系xOy中,直线l的参数方程为22224xtyt(t为参数),椭圆C的参数方程为cos1sin2xy(为参数),则直线l与椭圆C的公共点坐标为_.9.设函数()logmf xx(0m 且1m),若m是等比数列na(*Nn)的公比,且 2462018()7f a a aa,则22221232018()()()()f af af af a的值为_.-2-10.设变量x、y满足条件0220 xyxyyxym ,若该条件表示的平面区域是三角形,则实数m的取值范围是_.11.设集合1|,2xMy yxR ,1|1112,121Ny yxmxxm ,若NM,则实数m的取值范围是 .12.点1F,2F分别是椭圆22:12xCy的左、右两焦点,点N为椭圆C的上顶点,若动点M满足:2122MNMFMF,则122MFMF的最大值为_.二、选择题(本大题共有 4 题,满分 20 分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得 5 分,否则一律得零分.13.已知i为虚数单位,若复数2(i)ia 为正实数,则实数a的值为())A(2 B1 C0 D1 14.如图所示的几何体,其表面积为(55),下部圆柱的底面直径与该圆柱的高相等,上部圆锥的母线长为5,则该几何体的主视图的面积为())A(4 B6 C8 D10 15.设nS是无穷等差数列na的前n项和(*Nn),则“limnnS存在”是“该数列公差0d”的())A(充分非必要条件 B必要非充分条件 C充要条件 D既非充分也非必要条件 16.已知*Nk,,Rx y z,若222()5()k xyyzzxxyz,则对此不等式描叙正 确的是())A(若5k,则至少存在一个以,x y z为边长的等边三角形 B若6k,则对任意满足不等式的,x y z都存在以,x y z为边长的三角形 C若7k,则对任意满足不等式的,x y z都存在以,x y z为边长的三角形 D若8k,则对满足不等式的,x y z不存在以,x y z为边长的直角三角形 第 14 题图 文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3-3-三、解答题(本大题共有 5 题,满分 76 分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 17.(本题满分 14 分)本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 8 分 如图所示的正四棱柱1111ABCDABC D的底面边长为1,侧棱12AA,点E在棱1CC上,且1=CECC(0).(1)当1=2时,求三棱锥1DEBC的体积;(2)当异面直线BE与1D C所成角的大小为2arccos3时,求的值.18.(本题满分 14 分)本题共有 2 个小题,第 1 小题满分 8 分,第 2 小题满分 6 分 已知函数2(=sincossinf xxxx),Rx.(1)若函数()f x在区间,16a上递增,求实数a的取值范围;(2)若函数()f x的图像关于点11(,)Q x y对称,且1,4 4x,求点Q的坐标.19.(本题满分 14 分)本题共有 2 个小题,第 1 小题满分 8 分,第 2 小题满分 6 分 某市为改善市民出行,大力发展轨道交通建设.规划中的轨道交通s号线线路示意图如图所示.已知,M N是东西方向主干道边两个景点,,P Q是南北方向主干道边两个景点,四个景点距离城市中心O均为5 2 km,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G的位置?第 19 题图 A D B C A1 B1 C1 D1 E 第 17 题图 文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3-4-20.(本题满分 16 分)本题共有 3 小题,第 1 小题 4 分,第 2 小题 6 分,第 3 小题 6 分.定义在R上的函数()f x满足:对任意的实数x,存在非零常数t,都有()()f xttf x 成立.(1)若函数()3f xkx,求实数k和t的值;(2)当2t 时,若0,2x,()(2)f xxx,求函数()f x在闭区间 2,6上的值域;(3)设函数()f x的值域为,a a,证明:函数()f x为周期函数.21.(本题满分 18 分)本题共有 3 小题,第 1 小题 4 分,第 2 小题 6 分,第 3 小题 8 分.若数列na同时满足条件:存在互异的*,Np q使得pqaac(c为常数);当np且nq时,对任意*Nn都有nac,则称数列na为双底数列.(1)判断以下数列na是否为双底数列(只需写出结论不必证明);6nann;sin2nna;35nann(2)设501012,1502,50nnnnam n,若数列na是双底数列,求实数m的值以及数列na的前n项和nS;(3)设9310nnakn ,是否存在整数k,使得数列na为双底数列?若存在,求出所有的k的值;若不存在,请说明理由.普陀区 2017 学年第二学期高三数学质量调研评分标准(参考)一、填空题 1 2 3 4 5 6 3y 12 3x 24 6 5 7 8 9 10 11 12 221 22(,)24 1990 4(0,1,)3(1,0)610 文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3-5-二、选择题 13 14 15 16 D B A B 三、解答题 17.(1)由11=2CECC,得1CE,又正四棱柱1111ABCDABC D,则11D C 平面EBC,则11113DEBCRt ECBVSD C 4 分 111326CE BC.6 分 (2)以D为原点,射线DA、DC、1DD作x轴、y轴、z轴的 正半轴,建立空间直角坐标系(如图),2 分 则(1,1,0)B,(0,1,2)E,1(0,0,2)D,(0,1,0)C,即1(0,1,2)DC,(1,0,2)BE 4 分 又异面直线BE与1D C所成角的大小为2arccos3,则12210(1)1 0(2)2423514520D C BED CBE ,6 分 化简整理得2165,又0,即54.8 分 18.(1)21cos 21(=sincossinsin 222xf xxxxx),2 分 21sin(2)242x,4 分 当16x时,则322416482x ,又函数()f x在,16a上递增,则242a ,即38a,7 分 则实数a的取值范围为3,)816a.8 分(2)若函数()f x的图像关于点11(,)Q x y对称,则1sin(2)04x,2 分 即124xk(Zk),则128kx,44,4 分 由Zk得0k,则点Q的坐标为1(,)82.6 分 zyx文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3-6-19.(1)因为线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,所以线路AB段所在曲线是以定点M,N为左、右焦点的双曲线的左支,则其方程为2225(0,0)xyxy,3 分 因为线路BC段上的任意一点到O的距离都相等,所以线路BC段所在曲线是以O为圆心、以OB长为半径的圆,由线路AB段所在曲线方程可求得(5,0)B,则其方程为2225(0,0)xyxy,5 分 因为线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,所以线路CD段所在曲线是以定点Q、P为上、下焦点的双曲线下支,则其方程为2225(0,0)xyxy,7 分 故线路示意图所在曲线的方程为25x xy y.8 分(2)设00(,)G xy,又(0,5 2)Q,则2200(5 2)GQxy,由(1)得220025xy,即2200210 275GQyy,3 分 则205 2502()2GQy,即当05 22y 时,min5 2GQ,则站点G的坐标为556,222,可使G到景点Q的距离最近.6 分 20(1)由()()f xttf x 得,()3(3)k xtt kx 对Rx恒成立,即()(3)30kkt xkt 对Rx恒成立,则(1)0(3)300k tktt ,2 分 即01kt.4 分(2)当0,2x时,2()(2)1(1)0,1f xxxx ,2 分 当 2,0 x时,即20,2x,由(2)2()f xf x 得1()(2)2f xf x,则1(),02f x,3 分 当2,4x时,即20,2x,文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3-7-由(2)2()f xf x 得()2(2)f xf x,则()2,0f x,4 分 当4,6x时,即22,4x,由()2(2)f xf x 得()0,4f x,5 分 综上得函数()f x在闭区间0,6上的值域为 2,4.6 分(3)(证法一)由函数()f x的值域为,a a得,()f xt的取值集合也为,a a,当0t 时,()(),f xttf xta ta ,则taataa ,即1t.2 分 由(1)()f xf x 得(2)(1)()f xf xf x ,则函数()f x是以2为周期的函数.3 分 当0t 时,()(),f xttf xtata ,则taataa ,即1t .5 分 即(1)()f xf x,则函数()f x是以1为周期的函数.故满足条件的函数()f x为周期函数.6 分(证法二)由函数()f x的值域为,a a得,必存在0Rx,使得0()f xa,当1t 时,对1t,有00()()f xttf xtaa ,对1t ,有00()()f xttf xtaa ,则1t 不可能;当01t 时,即11t,001()()f xf xtt,由()f x的值域为,a a得,必存在0Rx,使得0()f xta,仿上证法同样得01t 也不可能,则必有1t ,以下同证法一.21.(1)是双底数列,不是双底数列;4 分(2)数列na当150n 时递减,当50n 时递增,由双底数列定义可知5051aa,解得1m ,2 分 当150n 时,数列成等差,29910121002nnnSnn,文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3T6L1I3文档编码:CS5K6O10N7P8 HR1U5S5L2U4 ZG6O3