计量经济学精要习题参考答案(第四版).docx
计量经济学(第四版)习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据(4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。为了使模型更现实,我们有必要在模型中引进扰动项u来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。1.3时间序列数据时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。在一项应用中,依据估计量算出的一个具体的数值,称为估计值。如就是一个估计量,。现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为。第二章 计量经济分析的统计学基础 2.1 略,参考教材。2.2 =1.25 用a=0.05,N-1=15个自由度查表得=2.947,故99%置信限为 =174±2.947×1.25=174±3.684 也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。2.3 原假设 备择假设 检验统计量查表 因为Z= 5 >,故拒绝原假设, 即此样本不是取自一个均值为120元、标准差为10元的正态总体。2.4 原假设 : 备择假设 : 查表得 因为t = 0.83 < , 故接受原假设,即从上次调查以来,平均月销售额没有发生变化。第三章 双变量线性回归模型3.1 判断题(说明对错;如果错误,则予以更正)(1)对(2)对(3)错只要线性回归模型满足假设条件(1)(4),OLS估计量就是BLUE。(4)对(5)错R2 =ESS/TSS。(6)对(7)错。我们可以说的是,手头的数据不允许我们拒绝原假设。(8)错。因为,只有当保持恒定时,上述说法才正确。3.2 证明:3.3 (1),即Y的真实值和拟合值有共同的均值。(2)3.4 (1)(2)3.5(1),注意到由上述结果,可以看到,无论是两个截距的估计量还是它们的方差都不相同。(2)这表明,两个斜率的估计量和方差都相同。3.6(1)斜率的值 4.318表明,在19801994期间,相对价格每上升一个单位,(GM/$)汇率下降约4.32个单位。也就是说,美元贬值。截距项6.682的含义是,如果相对价格为0,1美元可兑换6.682马克。当然,这一解释没有经济意义。(2)斜率系数为负符合经济理论和常识,因为如果美国价格上升快于德国,则美国消费者将倾向于买德国货,这就增大了对马克的需求,导致马克的升值。(3)在这种情况下,斜率系数被预期为正数,因为,德国CPI相对于美国CPI越高,德国相对的通货膨胀就越高,这将导致美元对马克升值。3.7(1)(2)3.8 (1)序号YtXt111101.422.841.9610021070.4-1-0.410.1649312102.424.845.76100465-3.6-310.8912.962551080.40000.1664678-2.60006.7664796-0.6-21.240.363681070.4-1-0.410.164991191.411.411.96811010100.420.840.16100 968000212830.4668估计方程为: (2)回归结果为(括号中数字为t值): R2=0.518 (1.73) (2.93) 说明: Xt的系数符号为正,符合理论预期,0.75表明劳动工时增加一个单位,产量增加0.75个单位,拟合情况。 R2为0.518,作为横截面数据,拟合情况还可以.系数的显著性。斜率系数的t值为2.93,表明该系数显著异于0,即Xt对Yt有影响.(3) 原假设 : 备择假设 : 检验统计量 查t表, ,因为t= 0.978 < 2.306 ,故接受原假设:。3.9 对于x0=250 ,点预测值 =10+0.90*250=235.0的95%置信区间为:即 234.71 235.29。也就是说,我们有95%的把握预测将位于234.71 至235.29 之间.3.10(1)列表计算如下:序号YtXt116-2-5102543623110000012135172612364289428-1-339164541312241169155500277410679我们有: (2) (3) 对于=10 ,点预测值 =-1.015+0.365*10=2.635 的95%置信区间为:即 1.895 3.099,也就是说,我们有95%的把握预测将位于1.865 至3.405 之间.3.11 问题可化为“预测误差是否显著地大?”当X0 =20时,预测误差 原假设:备择假设:检验:若为真,则对于5-2=3个自由度,查表得5%显著性水平检验的t临界值为:结论:由于故拒绝原假设,接受备则假设H1,即新观测值及样本观测值来自不同的总体。3.12 (1)原假设 备择假设 检验统计量 查t表,在5%显著水平下 ,因为t=6.5>2.11 故拒绝原假设,即,说明收入对消费有显著的影响。(2)由回归结果,立即可得:(3)b的95置信区间为:3.13 回归之前先对数据进行处理。把名义数据转换为实际数据,公式如下:人均消费CC/P*100(价格指数)人均可支配收入YYr*rpop/100+Yu*(1-rpop/100)/P*100农村人均消费CrCr/Pr*100城镇人均消费CuCu/Pu*100农村人均纯收入YrYr/Pr*100 城镇人均可支配收入YuYu/Pu*100处理好的数据如下表所示:年份CYCrCuYrYu1985401.78 478.57 317.42 673.20 397.60 739.10 1986436.93 507.48 336.43 746.66 399.43 840.71 1987456.14 524.26 353.41 759.84 410.47 861.05 1988470.23 522.22 360.02 785.96 411.56 841.08 1989444.72 502.13 339.06 741.38 380.94 842.24 1990464.88 547.15 354.11 773.09 415.69 912.92 1991491.64 568.03 366.96 836.27 419.54 978.23 1992516.77 620.43 372.86 885.34 443.44 1073.28 1993550.41 665.81 382.91 962.85 458.51 1175.69 1994596.23 723.96 410.00 1040.37 492.34 1275.67 1995646.35 780.49 449.68 1105.08 541.42 1337.94 1996689.69 848.30 500.03 1125.36 612.63 1389.35 1997711.96 897.63 501.75 1165.62 648.50 1437.05 1998737.16 957.91 498.38 1213.57 677.53 1519.93 1999785.69 1038.97 501.88 1309.90 703.25 1661.60 2000854.25 1103.88 531.89 1407.33 717.64 1768.31 2001910.11 1198.27 550.11 1484.62 747.68 1918.23 20021032.78 1344.27 581.95 1703.24 785.41 2175.79 20031114.40 1467.11 606.90 1822.63 818.93 2371.65 根据表中的数据用软件回归结果如下:= 90.93 + 0.692 R2=0.997t: (11.45) (74.82) DW=1.15农村:= 106.41 + 0.60 R2=0.979t: (8.82) (28.42) DW=0.76城镇:= 106.41 + 0.71 R2=0.998t: (13.74) (91.06) DW=2.02从回归结果来看,三个方程的R2都很高,说明人均可支配收入较好地解释了人均消费支出。三个消费模型中,可支配收入对人均消费的影响均是显著的,并且都大于0小于1,符合经济理论。而斜率系数最大的是城镇的斜率系数,其次是全国平均的斜率,最小的是农村的斜率。说明城镇居民的边际消费倾向高于农村居民。第四章 多元线性回归模型4.1 应采用(1),因为由(2)和(3)的回归结果可知,除X1外,其余解释变量的系数均不显著。(检验过程略)4.2 (1) 斜率系数含义如下:0.273: 年净收益的土地投入弹性, 即土地投入每上升1%, 资金投入不变的情况下, 引起年净收益上升0.273%.0.733: 年净收益的资金投入弹性, 即资金投入每上升1%, 土地投入不变的情况下, 引起年净收益上升0.733%. 拟合情况: ,表明模型拟合程度较高.(2) 原假设 备择假设 检验统计量 查表, 因为t=2.022<,故接受原假设,即不显著异于0, 表明土地投入变动对年净收益变动没有显著的影响. 原假设 备择假设 检验统计量 查表, 因为t=5.864>,故拒绝原假设,即显著异于0,表明资金投入变动对年净收益变动有显著的影响.(3) 原假设 备择假设 : 原假设不成立检验统计量 查表,在5%显著水平下 因为F=47>5.14,故拒绝原假设。结论,:土地投入和资金投入变动作为一个整体对年净收益变动有影响.4.3 检验两个时期是否有显著结构变化,可分别检验方程中D和DX的系数是否显著异于0.(1) 原假设 备择假设 检验统计量 查表 因为t=3.155>, 故拒绝原假设, 即显著异于0。(2) 原假设 备择假设 检验统计量 查表 因为|t|=3.155>, 故拒绝原假设, 即显著异于0。结论:两个时期有显著的结构性变化。4.4 (1) (2)变量、参数皆非线性,无法将模型转化为线性模型。(3)变量、参数皆非线性,但可转化为线性模型。取倒数得:把1移到左边,取对数为:,令4.5 (1)截距项为-58.9,在此没有什么意义。X1的系数表明在其它条件不变时,个人年消费量增加1百万美元,某国对进口的需求平均增加20万美元。X2的系数表明在其它条件不变时,进口商品及国内商品的比价增加1单位,某国对进口的需求平均减少10万美元。(2)Y的总变差中被回归方程解释的部分为96%,未被回归方程解释的部分为4%。(3)检验全部斜率系数均为0的原假设。由于F192 > F0.05(2,16)=3.63,故拒绝原假设,回归方程很好地解释了应变量Y。(4) A. 原假设H0:1= 0 备择假设H1:1 ¹0 > t0.025(16)=2.12,故拒绝原假设,1显著异于零,说明个人消费支出(X1)对进口需求有解释作用,这个变量应该留在模型中。B. 原假设H0:2=0备择假设H1:2 ¹0 <t0.025(16)=2.12,不能拒绝原假设,接受2=0,说明进口商品及国内商品的比价(X2)对进口需求地解释作用不强,这个变量是否应该留在模型中,需进一步研究。4.6(1)弹性为-1.34,它统计上异于0,因为在弹性系数真值为0的原假设下的t值为:得到这样一个t值的概率(P值)极低。可是,该弹性系数不显著异于-1,因为在弹性真值为-1的原假设下,t值为:这个t值在统计上是不显著的。(2)收入弹性虽然为正,但并非统计上异于0,因为t值小于1()。(3)由,可推出 本题中,0.27,n46,k2,代入上式,得0.3026。4.7 (1)薪金和每个解释变量之间应是正相关的,因而各解释变量系数都应为正,估计结果确实如此。系数0.280的含义是,其它变量不变的情况下,CEO薪金关于销售额的弹性为0.28;系数0.0174的含义是,其它变量不变的情况下,如果股本收益率上升一个百分点(注意,不是1),CEO薪金的上升约为1.07;及此类似,其它变量不变的情况下,公司股票收益上升一个单位,CEO薪金上升0.024。(2)用回归结果中的各系数估计值分别除以相应的标准误差,得到4个系数的t值分别为:13.5、8、4.25和0.44。用经验法则容易看出,前三个系数是统计上高度显著的,而最后一个是不显著的。(3)R20.283,拟合不理想,即便是横截面数据,也不理想。4.8 (1)2.4。(2)因为Dt和(Dt×t)的系数都是高度显著的,因而两时期人口的水平和增长率都不相同。19721977年间增长率为1.5,19781992年间增长率为2.6(1.51.1)。4.9 原假设H0: 1 =2,3 =1.0 备择假设H1: H0不成立 若H0成立,则正确的模型是:据此进行有约束回归,得到残差平方和。 若H1为真,则正确的模型是原模型:据此进行无约束回归(全回归),得到残差平方和S。 检验统计量是: F(g,n-K-1) 用自由度(2,n-3-1)查F分布表,5%显著性水平下,得到FC , 如果F< FC, 则接受原假设H0,即1 =2,3 =0; 如果F> FC, 则拒绝原假设H0,接受备择假设H1。4.10 (1)2个,(2)4个,4.11 4.12 对数据处理如下:lngdpln(gdp/p) lnk=ln(k/p) lnL=ln(L/P)对模型两边取对数,则有lnYlnAalnKblnLlnv用处理后的数据回归,结果如下:t:(0.95) (16.46) (3.13) 由修正决定系数可知,方程的拟合程度很高;资本和劳动力的斜率系数均显著(tc=2.048), 资本投入增加1,gdp增加0.96%,劳动投入增加1,gdp增加0.18%,产出的资本弹性是产出的劳动弹性的5.33倍。第五章 模型的建立及估计中的问题及对策5.1(1)对(2)对(3)错即使解释变量两两之间的相关系数都低,也不能排除存在多重共线性的可能性。(4)对(5)错在扰动项自相关的情况下OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。(6)对(7)错模型中包括无关的解释变量,参数估计量仍无偏,但会增大估计量的方差,即增大误差。(8)错。在多重共线性的情况下,尽管全部“斜率”系数各自经t检验都不显著, R2值仍可能高。(9)错。存在异方差的情况下,OLS法通常会高估系数估计量的标准误差,但不总是。(10)错。异方差性是关于扰动项的方差,而不是关于解释变量的方差。5.2 对模型两边取对数,有lnYt=lnY0+t*ln(1+r)+lnut ,令LYlnYt,alnY0,bln(1+r),vlnut,模型线性化为:LYabtv估计出b之后,就可以求出样本期内的年均增长率r了。5.3(1)DW=0.81,查表(n=21,k=3,=5%)得dL=1.026。 DW=0.811.026 结论:存在正自相关。(2)DW=2.25,则DW´=4 2.25 = 1.75 查表(n=15, k=2, =5%)得du =1.543。 1.543DW´= 1.75 2 结论:无自相关。(3)DW= 1.56,查表(n=30, k=5, =5%)得dL =1.071, du =1.833。 1.071DW= 1.56 1.833结论:无法判断是否存在自相关。5.4(1) 横截面数据.(2) 不能采用OLS法进行估计,由于各个县经济实力差距大,可能存在异方差性。(3) GLS法或WLS法。5.5 (1)可能存在多重共线性。因为X3的系数符号不符合实际.R2很高,但解释变量的t值低:t2=0.9415/0.8229=1.144, t3=0.0424/0.0807=0.525.解决方法:可考虑增加观测值或去掉解释变量X3.(2)DW=0.8252, 查表(n=16,k=1,=5%)得dL=1.106.DW=0.8252< dL=1.106 结论:存在自相关. 单纯消除自相关,可考虑用科克伦奥克特法或希尔德雷斯卢法;进一步研究,由于此模型拟合度不高,结合实际,模型自相关有可能由模型误设定引起,即可能漏掉了相关的解释变量,可增加相关解释变量来消除自相关。5.6 存在完全多重共线性问题。因为年龄、学龄及工龄之间大致存在如下的关系:Ai7SiEi解决办法:从模型中去掉解释变量A,就消除了完全多重共线性问题。5.7 (1)若采用普通最小二乘法估计销售量对广告宣传费用的回归方程,则系数的估计量是无偏的,但不再是有效的,也不是一致的。(2)应用GLS法。设原模型为 (1)由于已知该行业中有一半的公司比另一半公司大,且已假定大公司的误差项方差是小公司误差项方差的两倍,则有,其中。则模型可变换为 (2)此模型的扰动项已满足同方差性的条件,因而可以应用OLS法进行估计。(3)可以。对变换后的模型(2)用戈德弗尔德匡特检验法进行异方差性检验。如果模型没有异方差性,则表明对原扰动项的方差的假定是正确的;如果模型还有异方差性,则表明对原扰动项的方差的假定是错误的,应重新设定。5.8(1)不能。因为第3个解释变量()是和的线性组合,存在完全多重共线性问题。(2)重新设定模型为我们可以估计出,但无法估计出。(3)所有参数都可以估计,因为不再存在完全共线性。(4)同(3)。5.9(1)R2很高,logK的符号不对,其 t值也偏低,这意味着可能存在多重共线性。(2)logK系数的预期符号为正,因为资本应该对产出有正向影响。但这里估计出的符号为负,是多重共线性所致。(3)时间趋势变量常常被用于代表技术进步。(1)式中,0.047的含义是,在样本期内,平均而言,实际产出的年增长率大约为4.7。(4)此方程隐含着规模收益不变的约束,即ab1,这样变换模型,旨在减缓多重共线性问题。(5)资本劳动比率的系数统计上不显著,看起来多重共线性问题仍没有得到解决。(6)两式中R2是不可比的,因为两式中因变量不同。5.10(1)所作的假定是:扰动项的方差及GNP的平方成正比。模型的估计者应该是对数据进行研究后观察到这种关系的,也可能用格里瑟法对异方差性形式进行了实验。(2)结果基本相同。第二个模型三个参数中的两个的标准误差比第一个模型低,可以认为是改善了第一个模型存在的异方差性问题。5.11 我们有原假设H0: 备则假设H1:检验统计量为:用自由度(25,25)查F表,5显著性水平下,临界值为:Fc1.97。因为F2.5454>Fc1.97,故拒绝原假设原假设H0:。结论:存在异方差性。5.12 将模型变换为:若、为已知,则可直接估计(2)式。一般情况下,、为未知,因此需要先估计它们。首先用OLS法估计原模型(1)式,得到残差et,然后估计:其中为误差项。用得到的和的估计值和生成令,用OLS法估计即可得到和,从而得到原模型(1)的系数估计值和。5.13 (1)全国居民人均消费支出方程:= 90.93 + 0.692 R2=0.997t: (11.45) (74.82) DW=1.15DW=1.15,查表(n=19,k=1,=5%)得dL=1.18。 DW=1.151.18结论:存在正自相关。可对原模型进行如下变换:Ct -Ct-1 = (1-)+(Yt-Yt-1)+(ut -ut -1)由令:C¢t= Ct 0.425Ct-1 , Y¢t= Yt-0.425Yt-1 ,=0.575 然后估计 C¢t=¢+Y¢t + t ,结果如下:= 55.57 + 0.688 R2=0.994 t:(11.45) (74.82) DW=1.97DW=1.97,查表(n=19,k=1,=5%)得du=1.401。 DW=1.97>1.18,故模型已不存在自相关。(2)农村居民人均消费支出模型:农村:= 106.41 + 0.60 R2=0.979t: (8.82) (28.42) DW=0.76DW=0.76,查表(n=19,k=1,=5%)得dL=1.18。 DW=0.761.18,故存在自相关。解决方法及(1)同,略。(3)城镇:= 106.41 + 0.71 R2=0.998t: (13.74) (91.06) DW=2.02DW=2.02,非常接近2,无自相关。5.14 (1)用表中的数据回归,得到如下结果: =54.19 + 0.061X1 + 1.98*X2 + 0.03X3 - 0.06X4 R20.91t: (1.41) (1.58) (3.81) (1.14) (-1.78)根据tc(=0.05,n-k-1=26)=2.056,只有X2的系数显著。 (2)理论上看,有效灌溉面积、农作物总播种面积是农业总产值的重要正向影响因素。在一定范围内,随着有效灌溉面积、播种面积的增加,农业总产值会相应增加。受灾面积及农业总产值呈反向关系,也应有一定的影响。而从模型看,这些因素都没显著影响。这是为什么呢? 这是因为变量有效灌溉面积、施肥量及播种面积间有较强的相关性,所以方程存在多重共线性。现在我们看看各解释变量间的相关性,相关系数矩阵如下:X1 X2 X3 X410.8960.8800.7150.89610.8950.6850.8800.89510.8830.7150.6850.8831X1X2 X3X4表中r120.896,r130.895,说明施肥量及有效灌溉面积和播种面积间高度相关。我们可以通过对变量X2的变换来消除多重共线性。令X22X2/X3(公斤/亩),这样就大大降低了施肥量及面积之间的相关性,用变量X22代替X2,对模型重新回归,结果如下: =233.62 + 0.088X1 + 13.66*X2 + 0.096X3 - 0.099X4 R20.91t: (-3.10) (2.48) (3.91) (4.77) (-3.19)从回归结果的t值可以看出,现在各个变量都已通过显著性检验,说明多重共线性问题基本得到解决。第六章 动态经济模型:自回归模型和分布滞后模型6.1(1)错。使用横截面数据的模型就不是动态模型。(2)对。(3)错。估计量既不是无偏的,又不是一致的。(4)对。(5)错。将产生一致估计量,但是在小样本情况下,得到的估计量是有偏的。(6)对。6.2 对于科克模型和适应预期模型,应用OLS法不仅得不到无偏估计量,而且也得不到一致估计量。但是,部分调整模型不同,用OLS法直接估计部分调整模型,将产生一致估计值,虽然估计值通常是有偏的(在小样本情况下)。6.3 科克方法简单地假定解释变量的各滞后值的系数(有时称为权数)按几何级数递减,即: Yt =+Xt +Xt-1 +2Xt-2 + ut 其中 0<<1。这实际上是假设无限滞后分布,由于0<<1, X的逐次滞后值对Y的影响是逐渐递减的。而阿尔蒙方法的基本假设是,如果Y依赖于X的现期值和若干期滞后值,则权数由一个多项式分布给出。由于这个原因,阿尔蒙滞后也称为多项式分布滞后。即在分布滞后模型中,假定:其中p为多项式的阶数。也就是用一个p阶多项式来拟合分布滞后,该多项式曲线通过滞后分布的所有点。6.4 (1)估计的Y值是非随机变量X1和X2的线性函数,及扰动项v无关。(2)及利维顿方法相比,本方法造成多重共线性的风险要小一些。6.5(1)(2) 第(1)问中得到的模型高度参数非线性,它的参数需采用非线性回归技术来估计。6.6 因此,变换模型为:用此式可估计出和,即可得到,然后可得到诸b的估计值。6.7 (1)设备利用对通货膨胀的短期影响是Xt的系数:0.141;从长期看,在忽略扰动项的情况下,如果Yt趋向于某一均衡水平,则Xt和Xt-1也将趋向于某一均衡水平:所以,设备利用对通货膨胀的长期影响是Xt和Xt1的系数之和:0.377。 (2)对模型的回归参数的显著性检验:原假设:H0: 1 =0备择假设:H1: 1 ¹0从回归结果可知,检验统计量2.60根据n-k-1=15,a=5%,查临界值表得tc2.131。由于t2.60> tc2.131故拒绝原假设,即Xt对y有显著影响。原假设:H0: 2 =0备择假设:H1: 2 ¹0从回归结果可知,检验统计量4.26根据n-k-1=15,a=5%,查临界值表得tc2.131。由于t4.26> tc2.131故拒绝原假设,即Xt1对y有显著影响。综上所述,所有的斜率系数均显著异于0,即设备利用和滞后一期的设备利用对通货膨胀都有显著的影响。(3)对此回归方程而言,检验两个斜率系数为零,等于检验回归方程的显著性,可用F检验。原假设:H0: 1 =2 =0备择假设:H1:原假设不成立检验统计量根据k=2,n-k-1=15,a=5%,查临界值表得Fc3.68。由于F19.973>Fc=3.68故拒绝原假设,即Xt、Xt1至少有一个变量对y有显著影响,表明方程总体是显著的。6.8模型的滞后周期m=3,模型有6个参数,用二次多项式进行拟合,即p=2,得我们有:代入原模型,得令:Z0t=Xt-i , Z1t=iXt-i , Z2t=i2Xt-i显然,Z0t ,Z1t和Z2t可以从现有观测数据中得出,使得我们可用OLS法估计下式:估计出,0,1, 2的值之后,我们可以转换为 Wi的估计值,公式为:6.9 Yt* = Xt+1e (1) Yt-Yt-1 = (Yt* - Yt-1) + u t (2)Xt+1e - Xte = (1-)( Xt - Xte);t=1,2,n (3)变换(3),得 Xt+1e = (1-)Xt +Xte (4) 因为Xt+1e无法表示成仅由可观测变量组成的表达式。但如果(4)式成立,则对于t期,它也成立,即:Xte = (1-)Xt-1 +Xt-1e (5)(5)代入(4),得:Xt+1e =(1-)Xt + (1-)Xt-1 +2Xt-1e (6)我们可以用类似的方法,消掉(6)式中的 这一过程可无限重复下去,最后得到:将(7)代入(1), 得:变换(2)得:Yt = Yt* - (1-)Yt-1 + u t (8)将(1)代入(8), 得:(9)式两端取一期滞后,得:(9)- (10),得:整理得:该式不能直接采用OLS法进行估计, 因为存在Yt-1、Yt-2等随机解释变量,它们及扰动项相关, 并且扰动项存在序列相关。若采用OLS法, 得到的估计量既不是无偏的, 也不是一致的。可采用工具变量法或极大似然法进行估计。第七章 时间序列分析7.1 单项选择题(1)A (2)D (3)B (4)B 7.2 一般来说,如果一个时间序列的均值和方差在任何时间保持恒定,并且两个时期t和t+k之间的协方差(或自协方差)仅依赖于两时期之间的距离(间隔或滞后)k,而及计算这些协方差的实际时期t无关,则该时间序列是平稳的。 只要这三个条件不全满足,则该时间序列是非平稳的。事实上,大多数经济时间序列是非平稳的。 实证分析中确定经济时间序列的性质的必要性在于,如果采用非平稳时间序列进行回归,则可能产生伪回归问题,不能确定回归结果一定正确。7.3 大致说来,单位根这一术语意味着一给定的时间序列非平稳。专业点说,单位根指的是滞后操作符多项式A(L)的根。7.4 DF检验是一种用于决定一个时间序列是否平稳的统计检验方法。EG检验法是一种用于决定两个时间序列是否协整的统计检验方法。7.5 当回归方程中涉及的时间序列是非平稳时间序列时,OLS估计量不再是一致估计量,相应的常规推断程序会产生误导。这就是所谓的“伪回归”问题。 在回归中使用非均衡时间序列时不一定会造成伪回归,只要变量彼此同步,则这些变量间存在长期的线性关系.7.6(1)因为|2.35小于临界|值,表明住宅开工数时间序列是非平稳的。(2)按常规检验,t的绝对值达到2.35,可判断为在5水平上显著,但在单位根的情形下,临界|t|值是2.95而不是2.35。(3)由于的|值远大于对应的临界值,因此,住宅开工数的一阶差分是平稳时间序列。7.7 (1)R2=0.9643DW=0.3254认为A是伪回归(2)R2< DW 认为B不是伪回归(3)从C可以看出,=-2.2521 查表7-3变量数为2,样本容量为72.在5%的显著性水平下-3.46 -2.2521>-3.46 M1及GDP之间不存在协整关系,不改变(1)中的结论,认为A是伪回归。如果M1及GDP的单整阶数不同,协整关系仍然不存在,A仍然是伪回归。(4)此方程给出的是M1和GDP的对数之间的短期关系。这是因为给出的方程考虑了误差调整机制(ECM),它试图在两变量离开其长期通道的情况下,恢复均衡。可是,方程中误差项在5%水平上不显著。如我们在(2)和(3)中所讨论的,由于协整检验的各结果相当混乱,使人难以得出所提供的回归结果A是否伪回归的明确结论。7.8 用表中的人口(pop)时间序列数据,进行单位根检验,得到如下估计结果:两种情况下,t值分别为0.40和 -0.88,从DickeyFuller统计量临界值表中可以看出,两者分别大于从0.01到0.10的各种显著性水平下的值和值。因此,两种情况下都不能拒绝原假设,即私人消费时间序列是非平稳序列。下面看一下该序列的一阶差分(dpop)的平稳性。做类似于上面的回归,得到如下结果:其中dpopt=dpopt-dpopt-1。两种情况下,t值分别为-3.287和-3.272,从DickeyFuller统计量临界值表中可以看出,第一个检验小于从0.025到0.10的各种显著性水平下的值和值;第二个检验小于0.10显著性水平下的值。因此,在0.10显著水平下,二者都拒绝原假设,即人口一阶差分时间序列没有单位根,或者说该序列是平稳序列。综合以上结果,我们的结论是:dpopt是平稳序列,dpoptI(0)。而popt是非平稳序列,由于dpoptI(0),因而poptI(1)。7.9 步骤一:求出三变量的单整的阶 (1)对三变量原序列的单位根检验从DickeyFuller统计量临界值表中可以看出,三个序列的t值分别大于从0.01到0.10的各种显著性水平下的值和值。因此,三个序列的单位根检验都不能拒绝原假设,即出口、进口、价格指数三个时间序列都是非平稳序列。下面看一下这些序列的一阶差分的平稳性。做类似于上面