浙江省杭州市滨江区2013年七年级(下)期中数学试卷(含答案).docx
-
资源ID:55482934
资源大小:53.10KB
全文页数:2页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙江省杭州市滨江区2013年七年级(下)期中数学试卷(含答案).docx
七年级数学试卷一、仔细选一选(10小题,每题3分,共30分)1、下列方程中,是二元一次方程的是( ) Ay=6 B+=1 C3xy2=0 D4xy=32、下列运算正确的是()A(2ab)·(3ab)354a4b4 B5x2·(3x3)215x12C(0.16)·(10b2)3b7 D(2×10n)(×10n)102n 第4题图 3、下列各组数中,互为相反数的是()A(2)3及23 B(2)2及22 C33及()3 D(3)3及()34、如图,及构成同旁内角的角有()A1个 B2个 C5个 D4个 第5题图 5、如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()Aa户最长 Bb户最长 Cc户最长 D三户一样长6如图所示,1=72°,2=72°,3=70°,求4的度数为( )A72° B70° C108° D110° 第6题图7、因H7N9禽流感致病性强,某药房打算让利于民,板蓝根一箱原价为100元,现有下列四种调价方案,其中0nm100,则调价后板蓝根价格最低的方案是()A先涨价m%,再降价n% B先涨价n%,再降价m%C先涨价,再降价 D无法确定8、下列语句:同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都及第三条直线垂直;过一点有且只有一条直线及已知直线平行,其中()A、是正确的命题B、是正确命题C、是正确命题 D以上结论皆错9、一个正方形边长增加3cm,它的面积就增加39cm2,这个正方形边长是( )A、8 cm B、5 cm C、6cm D、10 cm10、已知是一个有理数的平方,则n不能取以下各数中的哪一个( ) A、 30 B、32 C、18 D、9二、耐心填一填(6小题,每题4分,共24分)11、二元一次方程3x2y15的正整数解为_12、 第14题图13、若是一个完全平方式,则常数的值是 14、如图,面积为12cm2的ABC沿BC方向平移至DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是 cm215、两个角的两边分别平行,其中一个角比另一个角的4倍少30°,这两个角是 16、某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组(上下车时间忽略不计),最后两组同时达到北山站。已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离为 千米三、认真解一解(7小题,共66分)17、解方程组(本题8分)18、计算(本题6分)(1)4a2x2·(a4x3y3)÷(a5xy2) (2) 19、(本题10分)如图,有一条小船小船移动过程以点A的位置变化为参照。(1)若把小船平移,使点A移到点B,请你在图中画出平移后的小船(2)若该小船先从点A航行到达岸边L的点P(即A点及L上的P点重合)处补给后,再航行到点B,但要求航程最短,试在图中画出点P的位置(3)求出靠岸点P及A,B所围成的ABP的面积(简要写出计算过程即可)20、(本题8分)如图,学校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积21、(本题10分)如图,M、N、T和P、Q、R分别在同一直线上, 且1=3,P=T,说明M=R的理由22、(本题12分)某蔬菜公司收购到某种蔬菜280吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工12吨或者粗加工32吨.现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1500元,精加工后为3000元,那么该公司出售这些加工后的蔬菜共可获利多少元?23、(本题12分)如图1,ABCD,EOF是直线AB、CD间的一条折线(1)说明:O=BEO+DFO(2)如图2,如果将折一次改为折二次,如图2,则BEO、O、P、PFC会满足怎样的关系,证明你的结论(3)若将折线继续折下去,折三次,折四次折n次,又会得到怎样的结论?(不需证明)第 2 页