2016领航《圆与方程》知识点及题型(完整版)).pdf
领航高一数学必修二解析几何初步1 领航 圆与方程的知识点及题型一、圆的方程一圆的标准方程222xaybr,圆心为 a,b,半径为r 1、求标准方程的方法关键是求出圆心,a b和半径r待定系数:往往已知圆上三点坐标利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2、特殊位置的圆的标准方程设法无需记,关键能理解条件方程形式圆心在原点2220 xyrr过原点2222220 xaybabab圆心在x轴上2220 xayrr圆心在y轴上2220 xybrr圆心在x轴上且过原点2220 xayaa圆心在y轴上且过原点2220 xybbb与x轴相切2220 xaybbb与y轴相切2220 xaybaa与两坐标轴都相切2220 xaybaab二圆的一般方程2222040 xyDxEyFDEF1、220AxByCxyDxEyF表示圆方程则222200004040ABABCCDEAFDEFAAA领航高一数学必修二解析几何初步2(1)当0422FED时,方程表示一个圆,其中圆心2,2EDC,半径2422FEDr.(2)当0422FED时,方程表示一个点2,2ED.(3)当0422FED时,方程不表示任何图形.2、求圆的一般方程一般可采用待定系数法或者利用圆的几何性质结合图形分析3、2240DEF常可用来求有关参数的范围三点与圆的关系1、设点到圆心的距离为d,圆半径为r:a、点在圆内dr b、点在圆上d=r c、点在圆外dr 2、给定点),(00yxM及圆222)()(:rbyaxC.M 在圆 C 内22020)()(rbyax M 在圆 C 上22020)()rbyax(M 在圆 C 外22020)()(rbyax对应训练求圆的方程1、过点 A(1,1),B(1,1)且圆心在直线xy2 0 上的圆的方程是2、假设22(1)20 xyxy表示圆,则的取值范围是3、以点)1,2(为圆心且与直线0543yx相切的圆的方程为4、圆心在直线yx 上且与 x 轴相切于点(1,0)的圆的方程为5、以点 C(2,3)为圆心且与y 轴相切的圆的方程是6、求经过A(4,2),B(1,3)两点,且在两坐标轴上的四个截距之和是2 的圆的方程7、求经过点(8,3),并且和直线x6 与 x10 都相切的圆的方程8、点(11),在圆22()()4xaya的内部,则a的取值范围是9、过点1,1A,1,1B且圆心在直线20 xy上的圆的方程10、假设直线34120 xy与两坐标轴交点为A,B,则以线段AB为直径的圆的方程是11、2016 年天津高考已知圆C 的圆心在x 轴的正半轴上,点(0,5)M在圆 C 上,且圆文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10领航高一数学必修二解析几何初步3 心到直线20 xy的距离为4 55,则圆 C 的方程为二、直线与圆的位置关系1、直线0CByAx与圆222)()(rbyax圆心到直线的距离22BACBbAad1无交点直线与圆相离rd;2只有一个交点直线与圆相切rd;3有两个交点直线与圆相交rd;弦长|AB|=222drdrd=rrd还可以利用直线方程与圆的方程联立方程组0022FEyDxyxCByAx求解,通过解的个数来判断:1当0时,直线与圆有2 个交点,直线与圆相交;2当0时,直线与圆只有1 个交点,直线与圆相切;3当0时,直线与圆没有交点,直线与圆相离;2、直线与圆相切1常见题型求过定点的切线方程切线条数点在圆外两条;点在圆上一条;点在圆内无求切线方程的方法及注意点i点在圆外如定点00,P xy,圆:222xaybr,22200 xaybr 第一步:设切线l方程00yyk xx第二步:通过drk,从而得到切线方程特别注意:以上解题步骤仅对k存在有效,当k不存在时,应补上千万不要漏了!例:过点1,1P作圆2246120 xyxy的切线,则切线方程ii点在圆上文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10领航高一数学必修二解析几何初步4 假设点00 xy,在圆222xyr上,则切线方程为200 x xy yr会在选择题及填空题中运用,但一定要看清题目.假设点00 xy,在圆222xaybr上,则切线方程为200 xaxaybybr碰到一般方程则可先将一般方程标准化,然后运用上述结果。假设点00 xy,在圆2222040 xyDxEyFDEF上,则切线方程为0000022xxyyx xy yDEF由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是判断点与圆的位置关系,得出切线的条数.求切线长:利用基本图形,22222APCPrAPCPr求切点坐标:利用两个关系列出两个方程1ACAPACrkk3、直线与圆相交1求弦长及弦长的应用问题垂径定理及勾股定理常用弦长公式:222121212114lkxxkxxx x暂作了解,无需掌握2判断直线与圆相交的一种特殊方法一种巧合:直线过定点,而定点恰好在圆内.3关于点的个数问题例:1、假设圆22235xyr上有且仅有两个点到直线4320 xy的距离为1,则半径r的取值范围是_.答案:4,62、已知圆bxylyx:,422直线,当b为时,圆422yx上恰有3 个点到直线l的距离都等于1。3、已知圆bxylyx:,422直线,当b为时,圆422yx上恰有1 个点到直线l的距离都等于1。4、已知圆bxylyx:,422直线,当b为时,圆422yx上恰有2 个点到直线l的距离都等于1。5、已知圆bxylyx:,422直线,当b为时,圆422yx上恰有 4 个点到直文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10领航高一数学必修二解析几何初步5 线l的距离都等于1。对应训练直线与圆的关系1、以点(3,4)为圆心,且与x 轴相切的圆的方程是2、假设直线x ym0 与圆 x2 y2m 相切,则m 为3、直线1yx与圆0222ayyx)0(a没有公共点,则a的取值范围是4、过坐标原点且与圆0252422yxyx相切的直线方程为5、直线l过点),(02,l与圆xyx222有两个交点时,斜率k的取值范围是6、设直线03yax与圆4)2()1(22yx相交于BA、两点,且弦AB的长为32,则a.7、设圆 x2 y24x5 0 的弦 AB 的中点为P(3,1),则直线AB 的方程是8、求过点P 6,4且被圆2220 xy截得长为62的弦所在的直线方程9、2016 全国高考新课标卷 文数 6 圆2228130 xyxy的圆心到直线10axy的距离为1,则 a10、2016 全国高考新课标卷文数 15T 设直线2yxa与圆22:220Cxyay相交于,A B两点,假设|2 3AB,则圆 C 的面积为11、2016 全国高考新课标卷文数 15T已知直线l:360 xy与圆2212xy交于,A B两点,过,A B分别作l的垂线与x轴交于,C D两点,则|CD_12、2016 全国高考新课标 卷理数16T已知直线l:330mxym与圆2212xy交 于,A B两 点,过,A B分 别 做l的 垂 线 与x轴 交 于,C D两 点,假 设2 3AB,则|CD_.文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10领航高一数学必修二解析几何初步6 13、2016 年北京高考圆x+12+y2=2 的圆心到直线y=x+3 的距离为14、已知圆22:(2)1Mxy,Q 是x轴上的动点,QA、QB 分别切圆M 于 A,B 两点1假设点Q的坐标为 1,0 ,求切线QA、QB的方程(2)求四边形 QAMB 的面积的最小值;(3)假设4 23AB,求直线MQ 的方程.三、对称问题1、假设圆222120 xymxmym,关于直线10 xy,则实数m的值为_.2、已知点A是圆C:22450 xyaxy上任意一点,A点关于直线210 xy的对称点在圆C上,则实数a_.3、圆22131xy关于直线0 xy对称的曲线方程是_.4、已知圆1C:22421xy与圆2C:22241xy关于直线l对称,则直线l的方程为 _.5、圆22311xy关于点2,3对称的曲线方程是_.6、圆 x2+y2+x6y+3=0 上两点 P、Q 关于直线kxy+4=0 对称,则k=_.7、设 O 为坐标原点,曲线x2+y2+2x6y+1=0 上有两点P、Q,满足关于直线x+my+4=0 对称,又满足OPOQ,则 m 的值,直线 PQ 的方程四、最值问题方法主要有三种:1数形结合;2代换;3参数方程1、已知实数x,y满足方程22410 xyx,求:文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10领航高一数学必修二解析几何初步7 15yx的最大值和最小值为2yx的最小值为322xy的最大值和最小值分别为2、圆0104422yxyx上的点到直线014yx的最大距离与最小距离的差是3、已知)0,2(A,)0,2(B,点P在圆4)4()3(22yx上运动,则22PBPA的最小值是.4、设 P 为圆 x2+y2=1 上的动点,则点P 到直线 3x4y10=0 的距离的最小值为_ 5、假设点P在直线23100 xy上,直线,PA PB分别切圆224xy于,A B两点,则四边形PAOB面积的最小值为6、动 点 P 在 直 线 2x+y=0上 运 动,过 P 作 圆 x-3 2+y-4 2=4 的 切 线,切 点为 Q,则|PQ|的 最 小 值 为7、已知点B 2,3 ,圆 C:x-3 2+y-4 2=9,假 设 点 A 是 圆 C 上 一 动 点,点 P是 x 轴 上 的 一 动 点,则|PA|+|PB|的 最 小 值 是.8、假设直线240mxnym,nR,始终平分圆224240 xyxy的周长,则m n的最大值是 _.9、【2014 年江西卷理09】在平面直角坐标系中,,A B分别是x轴和y轴上的动点,假设以AB为直径的圆C与直线240 xy相切,则圆C面积的最小值为五、圆的参数方程222cos0sinxrxyrryr,为参数222cos0sinxarxaybrrybr,为参数六、圆与圆的位置关系文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:CW3M4H9A10J3 HW5A1S5R10J6 ZY3S5S2P2S10文档编码:C