2005年上海市普通高等学校春季招生考试数学试卷及答案.pdf
得分评 卷 人2005 年上海市普通高等学校春季招生考试数学试卷考生注意:1.答卷前,考生务必将姓名、高考座位号、校验码等填写清楚.2.本试卷共有22 道试题,满分150 分.考试时间120 分钟.一.填空题(本大题满分48 分)本大题共有12 题,只要求直接填写结果,每题填对得4 分,否则一律得零分.1.方程2lglg(2)0 xx的解集是.2.nnn212lim.3.若3cos5,且2,0,则2tg.4.函数2()f xx)2,(x的反函数)(1xf.5.在 ABC 中,若90C,4ACBC,则BA BC.6.某班共有40 名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是(结果用最简分数表示).7.双曲线116922yx的焦距是.8.若3,2223nnxcxbxaxxnnn且N,且2:3:ba,则n.9.设数列na的前n项和为nS(Nn).关于数列na有下列三个命题:(1)若na既是等差数列又是等比数列,则)(1Nnaann;(2)若RbanbnaSn、2,则na是等差数列;(3)若nnS11,则na是等比数列.这些命题中,真命题的序号是.10.若集合RxxxAx,32cos3,RyyyB,12,则BA=.11.函数xxyarcsinsin的值域是.12.已知函数2()2logxf xx,数列na的通项公式是nan1.0(Nn),当|()20 0 5nf a取得最小值时,n.二选择题(本大题满分16 分)本大题共有4 题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4 分,否则一律得零分.13.已知直线nml、及平面,下列命题中的假命题是得分评 卷 人(A)若/lm,/mn,则/ln.(B)若l,/n,则ln.(C)若lm,/mn,则ln.(D)若/l,/n,则/ln.答()14.在 ABC 中,若CcBbAacoscoscos,则ABC是(A)直角三角形.(B)等边三角形.(C)钝角三角形.(D)等腰直角三角形.答()15.若cba、是常数,则“0402caba且”是“对任意Rx,有02cxbxa”的(A)充分不必要条件.(B)必要不充分条件.(C)充要条件.(D)既不充分也不必要条件.答()16.设函数()f x的定义域为R,有下列三个命题:(1)若存在常数M,使得对任意Rx,有()f xM,则M是函数()f x的最大值;(2)若存在R0 x,使得对任意Rx,且0 xx,有)()(0 xfxf,则)(0 xf是函数()f x的最大值;(3)若存在R0 x,使得对任意Rx,有)()(0 xfxf,则)(0 xf是函数()f x的最大值.这些命题中,真命题的个数是(A)0 个.(B)1 个.(C)2 个.(D)3 个.答()三解答题(本大题满分86 分)本大题共有6 题,解答下列各题必须写出必要的步骤.17.(本题满分12 分)已知z是复数,iziz22、均为实数(i为虚数单位),且复数2)(iaz在复平面上对应的点在第一象限,求实数a的取值范围.解 18.(本题满分12 分)已知 tg是方程01sec22xx的两个根中较小的根,求的值.解 19.(本题满分14 分)本题共有2 个小题,第1 小题满分6 分,第 2 小题满分8 分.已知正三棱锥ABCP的体积为372,侧面与底面所成的二面角的大小为60.得分评 卷 人得分评 卷 人得分评 卷 人文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7(1)证明:BCPA;(2)求底面中心O 到侧面的距离.证明(1)解(2)20.(本题满分14 分)本题共有2 个小题,第1 小题满分6 分,第 2 小题满分8 分.某市 2004 年底有住房面积1200 万平方米,计划从2005 年起,每年拆除20 万平方米的旧住房.假定该市每年新建住房面积是上年年底住房面积的5%.(1)分别求2005 年底和 2006 年底的住房面积;(2)求 2024 年底的住房面积.(计算结果以万平方米为单位,且精确到0.01)解(1)(2)21.(本题满分16 分)本题共有3 个小题,第1 小题满分3 分,第 2 小题满分6 分,第 3 小题满分7 分.已知函数xaxxf)(的定义域为),0(,且222)2(f.设点P是函数图象上的任意一点,过点P分别作直线xy和y轴的垂线,垂足分别为NM、.(1)求a的值;(2)问:|PNPM是否为定值?若是,则求出该定值,若不是,则说明理由;(3)设 O 为坐标原点,求四边形OMPN 面积的最小值.解(1)(2)(3)22.(本题满分18 分)本题共有3个小题,第1 小题满分5 分,第 2 小题满分8 分.第 3 小题满分 5 分.(1)求右焦点坐标是)0,2(,且经过点)2,2(的椭圆的标准方程;(2)已知椭圆C的方程是12222byax)0(ba.设斜率为 k 的直线l,交椭圆C于AB、两点,AB的得分评 卷 人得分评 卷 人得分评 卷 人PBCAO文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7中点为M.证明:当直线l平行移动时,动点M在一条过原点的定直线上;(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.解(1)证明(2)解(3)2005 年上海市普通高等学校春季招生考试数 学 试 卷参考答案及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第 17 题至第 22 题中右端所注的分数,表示考生正确做到这一步应得的该题的累加分数.4.给分或扣分均以1 分为单位.答案及评分标准一(第 1 至 12 题)每一题正确的给4 分,否则一律得零分.1.2,1.2.0.3.21.4.4,(,xx.5.16.6.2601.7.65.8.11.9.(1)、(2)、(3).10.1.11.21sin,21sin.12.110 二(第 13 至 16 题)每一题正确的给4 分,否则一律得零分.文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7题号13 14 15 16 代号D B A C 三(第 17 至 22 题)17.解 设R)yxyixz、(,iyxiz)2(2,由题意得2y.2 分ixxiixiixiz)4(51)22(51)2)(2(51222由题意得4x.6 分iz24.2)(aiziaaa)2(8)412(2,9 分根据条件,可知0)2(804122aaa,解得62a,实数a的取值范围是)6,2(.12 分18.解 tg是方程01sec22xx的较小根,方程的较大根是ctg.tg+ctg=sec2,即cos2cossin121sin.5 分解得672k,或Zkk,62.8 分当)(672Zkk时,tg33,ctg3;当)(62Zkk时,tg33,ctg3,不合题意.Zkk,672.12 分19.证明(1)取 BC 边的中点D,连接AD、PD,则BCAD,BCPD,故 BC平面APD.4 分BCPA.6 分解(2)如图,由(1)可知平面PBC平面APD,则PDA是侧面与底面所成二面角的平面角.是 点 O 到 侧过点 O 作EPDOE,为垂足,则 OE 就面的距离.9 分设 OE 为 h,由题意可知点O 在AD上,60PDO,hOP2.文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7hBChOD4,32,11 分2234)4(43hhSABC,3233823431372hhh,3h.即底面中心O 到侧面的距离为3.14 分20.解(1)2005 年底的住房面积为124020%)51(1200(万平方米),2006 年底的住房面积为128220%)51(20%)51(12002(万平方米)2005年 底 的 住 房 面 积 为1240万 平 方 米,2006年 底 的 住 房 面 积 约 为1282万 平 方米.6 分(2)2024 年底的住房面积为20%)51(20%)51(20%)51(20%)51(120018192010 分64.252205.0105.120%)51(12002020(万平方米)2024 年底的住房面积约为2522.64 万平方米.14 分21.解(1)22222)2(af,2a.3 分(2)设点P的坐标为),(00yx,则有0002xxy,00 x,由点到直线的距离公式可知:0000|,12|xPNxyxPM,故有1|PNPM,即|PNPM为定值,这个值为1.9 分(3)由题意可设),(ttM,可知),0(0yN.PM与直线xy垂直,11PMk,即100txty,解得)(2100yxt,又0002xxy,0022xxt.222120 xSOPM,222120 xSOPN,212)1(212020 xxSSSOPNOPMOMPN,当且仅当10 x时,等号成立.文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7 此时四边形OMPN 面积有最小值21.16 分22.解(1)设椭圆的标准方程为12222byax,0ba,422ba,即椭圆的方程为142222bybx,点(2,2)在椭圆上,124422bb,解得42b或22b(舍),由此得82a,即椭圆的标准方程为14822yx.5分(2)设直线 l 的方程为mkxy,6 分与椭圆C的交点A(11,yx)、B(22,yx),则有12222byaxmkxy,解得02)(222222222bamakmxaxkab,0,2222kabm,即222222kabmkab.则222221212222212,2kabmbmkxmkxyykabkmaxx,AB中点M的坐标为22222222,kabmbkabkma.11 分 线段AB的中点M在过原点的直线022ykaxb上.13 分(3)如图,作两条平行直线分别交椭圆于A、B和DC、,并分别取AB、CD 的中点NM、,连接直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于1A、1B和11DC、,并分别取11BA、11DC的中点11NM、,连接直线11NM,那 么 直 线MN和11NM的 交 点 O 即 为 椭 圆 中心.18 分文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7 ZB4R1Y8R9G7文档编码:CX2X7I5G10K5 HP6R10O8G9K7