欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2008数学一真题答案解析.pdf

    • 资源ID:55549306       资源大小:254.51KB        全文页数:18页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2008数学一真题答案解析.pdf

    考研数学一试题分析、详解和评注一、选择题:(本题共 8 小题,每小题4 分,共 32 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数20()ln(2)xf xt dt,则()fx的零点个数为【】(A)0.(B)1.(C)2.(D)3【答案】应选(B).【详解】22()ln(2)22 ln(2)fxxxxx显然()fx在区间(,)上连续,且(1)(1)(2ln3)(2ln3)0ff?,由零点定理,知()fx至少有一个零点又2224()2ln(2)02xfxxx,恒大于零,所以()fx在(,)上是单调递增的又因为(0)0f,根据其单调性可知,()fx至多有一个零点故()fx有且只有一个零点故应选(B).(2)函数(,)arctanxf x yy在点(0,1)处的梯度等于【】(A)i(B)i.(C)j.(D)j.【答案】应选(A).【详解】因为222211fyyxxxyy222221xfxyxyxyy所以(0,1)1fx,(0,1)0fy,于是(0,1)(,)igradf x y.故应选(A).(3)在下列微分方程中,以123cos2sin2xyC eCxCx(123,C CC为任意的常数)为通解的是【】(A)440yyyy.(B)440yyyy.(C)440yyyy.(D)440yyyy.【答案】应选(D).【详解】由123cos2sin 2xyC eCxCx,可知其特征根为11,2,32i,故对应的特征值方程为2(1)(2)(2)(1)(4)ii32443244所以所求微分方程为440yyyy应选(D).(4)设函数()f x在(,)内单调有界,nx为数列,下列命题正确的是【】(A)若nx收敛,则()nf x收敛(B)若nx单调,则()nf x收敛(C)若()nf x收敛,则nx收敛.(D)若()nf x单调,则nx收敛.【答案】应选(B).【详解】若nx单调,则由函数()f x在(,)内单调有界知,若()nf x单调有界,因此若()nf x收敛故应选(B).(5)设A为n阶非零矩阵,E为n阶单位矩阵若30A,则【】则下列结论正确的是:(A)EA不可逆,则EA不可逆.(B)EA不可逆,则EA可逆.(C)EA可逆,则EA可逆.(D)EA可逆,则EA不可逆.【答案】应选(C).【详解】故应选(C).23()()EAEAAEAE,23()()EAEAAEAE故EA,EA均可逆故应选(C).(6)设A为 3 阶实对称矩阵,如果二次曲面方程1xxyz A yz在正交变换下的标准方程的图形如图,则A的正特征值个数为【】(A)0.(B)1.(C)2.(D)3.文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7文档编码:CJ1X5X6I2S1 HH2R1X9W6U7 ZH10J9P9D1Y7【答案】应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221xyzac故A的正特征值个数为1故应选(B).(7)设随机变量,X Y独立同分布且X的分布函数为()F x,则max,ZX Y的分布函数为【】(A)2()Fx.(B)()()F x F y.(C)211()F x.(D)1()1()F xF y.【答案】应选(A)【详解】()max,F zP ZzPX Yz2()()()P Xz P YzF z F zFz故应选(A)(8)设随机变量XN(0,1):,(1,4)YN:,且相关系数1XY,则【】(A)211P YX(B)211P YX(C)211P YX(D)211P YX【答案】应选(D)【详解】用排除法设YaXb由1XY,知X,Y正相关,得0a排除(A)和(C)由(0,1)XN:,(1,4)YN:,得0,1,()EXEYE aXbaEXb10ab,1b从而排除(B).故应选(D)二、填空题:(914 小题,每小题4 分,共 24 分.把答案填在题中横线上.)(9)微分方程0 xyy满足条件(1)1y的解是y.【答案】应填1yx【详解】由dyydxx,得dydxyx两边积分,得ln|ln|yxC文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3代入条件(1)1y,得0C所以1yx(10)曲线sin()ln()xyyxx在点(0,1)的切线方程为.【答案】应填1yx【详解】设(,)sin()ln()F x yxyyxx,则1(,)cos()1xFx yyxyyx,1(,)cos()xFx yxxyyx,(0,1)1xF,(0,1)1yF于是斜率(0,1)1(0,1)xyFkF故所求得切线方程为1yx(11)已 知 幂 级 数0(2)nnnax在0 x处 收 敛,在4x处 发 散,则 幂 级 数0(2)nnnax的收敛域为.【答案】(1,5【详解】由题意,知0(2)nnnax的收敛域为(4,0,则0nnna x的收敛域为(2,2所以0(2)nnnax的收敛域为(1,5(12)设曲面是224zxy的上侧,则2xydydzxdzdxx dxdy.【答案】4【详解】作辅助面1:0z取下侧则由高斯公式,有2xydydzxdzdxx dxdy122xydydzxdzdxx dxdyxydydzxdzdxx dxdy文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S32224xyydVx dxdy2222410()2xyxydxdydrrdr22200116424?g(13)设A为 2 阶矩阵,12,为线性无关的2 维列向量,10A,2122A则A的非零特征值为_.【答案】应填 1【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01AAA记12(,)P,因12,线性无关,故12(,)P是可逆矩阵因此0201APP,从而10201PAP记0201B,则A与B相似,从而有相同的特征值因为2|(1)01EB,0,1故A的非零特征值为1(14)设随机变量X服从参数为1 的泊松分布,则2P XEX_【答案】应填12e.【详解】因为X服从参数为1 的泊松分布,所以1EXDX 从而由22()DXEXEX得22EX故22P XEXP X12e三、解答题:(1523 小题,共94 分.)(15)(本题满分 10 分)求极限40sinsin(sin)sinlimxxxxx【详解 1】40sinsin(sin)sinlimxxxxx30sinsin(sin)limxxxx20coscos(sin)coslim3xxxxx201cos(sin)lim3xxx文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S30sin(sin)coslim6xxxx(或2201(sin)2lim3xxx,或22201sin(sin)2lim3xxoxx)16【详解 2】40sinsin(sin)sinlimxxxxx40sinsin(sin)sinlimsinxxxxx30sinlimtttt201coslim3ttt2202lim3ttt(或0sinlim6ttt)16(16)(本题满分9 分)计算曲线积分2sin22(1)Lxdxxydy,其中L是曲线sinyx上从(0,0)到(,0)的一段【详解 1】按曲线积分的计算公式直接计算2sin22(1)Lxdxxydy20sin 22(1)sincos xdxxxx dx20sin2xxdx200cos2cos22xxxxdx20cos22xxdx200sin2sin2222xxxdx22【详解 2】添加辅助线,按照Green 公式进行计算设1L为x轴上从点(,0)到(0,0)的直线段D是1L与 L围成的区域12sin 22(1)LLxdxxydy2(2(1)sin2Dxyxdxdyxy4Dxydxdy文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3sin004xxydydx202 sinxxdx0(1cos2)xx dx200cos22xxxdx200sin2sin2222xxxdx22因为102sin 22(1)sin20Lxdxxydyxdx故2sin22(1)Lxdxxydy22【详解 3】令2sin22(1)LIxdxxydy212sin222Lxdxydyx ydyII对于1I,记sin 2,2PxQy因为0PPyx,故1I与积分路径无关10sin 20Ixdx对于2I,22220022sincossin 2LIx ydyxxxdxxxdx200cos2cos22xxxxdx20cos22xxdx200sin2sin 2222xxxdx22故2sin22(1)Lxdxxydy2217(本题满分11 分)已知曲线22220,:35,xyzCxyz求C上距离xoy面最远的点和最近文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3文档编码:CN1T6M2G7F4 HH9E2I3Z5E5 ZT8H2R6J6S3的点【详

    注意事项

    本文(2008数学一真题答案解析.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开