求极限方法总结-全(共12页).doc
精选优质文档-倾情为你奉上极限求解总结1、极限运算法则设limnan=a,limnbn=b,则(1) limn(an±bn)=limnan±limnbn=a±b;(2) limnanbn=limnanlimnbn=ab;(3) limnanbn=limnanlimnbn=abb0.2、函数极限与数列极限的关系如果极限limxx0f(x)存在,xn为函数f(x)的定义域内任一收敛于x0的数列,且满足:xnx0nN+,那么相应的函数值数列f(x)必收敛,且limnf(xn)=limxx0f(x)3、定理(1) 有限个无穷小的和也是无穷小;(2) 有界函数与无穷小的乘积是无穷小;4、推论(1) 常数与无穷小的乘积是无穷小;(2) 有限个无穷小的乘积也是无穷小;(3) 如果limf(x)存在,而c为常数,则 limcf(x)=climf(x)(4) 如果limf(x)存在,而n是正整数,则 limf(x)n=limf(x)n5、复合函数的极限运算法则设函数y=fgx是由函数u=gx与函数y=f(u)复合而成的,y=fgx在点x0的某去心领域内有定义,若limxx0gx=u0,limuu0f(u)=A,且存在0>0,当xUx0,0时,有g(x)u0,则limxx0fgx=limuu0f(u)=A6、夹逼准则 如果(1) 当xUx0,r(或x>M)时,g(x)f(x)h(x)(2) limxx0(x)g(x)=A, limxx0(x)h(x)=A那么limxx0(x)f(x)存在,且等于A7、两个重要极限(1) limx0sinxx=1(2) limx1+1xx=e8、求解极限的方法(1)提取因式法例题1、求极限limx0ex+e-x-2x2解:limx0ex+e-x-2x2=limx0e-x(e2x-2ex+1)x2=limx0e-xex-1x2=1例题2、求极限limx0ax2-bx2ax-bx2ab,a.b>0解:limx0ax2-bx2ax-bx2=limx0bx2abx2-1b2xabx-12=limx0bx2-2xx2lnabxlnab2=1lnab例题3、求极限limx+xpa1x-a1x+1a>0,a1解:limx+xpa1x+1a1x(x+1)-1=limx+xpa1x+11x(x+1)lna=limx+xpx(x+1)a1x+1lna=limx+xp-21+1xa1x+1lna=(2)变量替换法(将不一般的变化趋势转化为普通的变化趋势)例题1、limxsinmxsinnx解:令x=y+limxsinmxsinnx=limy0sinmy+msinny+n=-1m-nlimy0sinmysinny=-1m-nmn例题2、limx1x1m-1x1n-1解:令x=y+1limx1x1m-1x1n-1=limx1(1+y)1m-1(1+y)1n-1=nm例题3、limx+x2x2+x-3x3+x2解:令y=1xlimx+x2x2+x-3x3+x2=limy0+1y2+1y-31y3+1y2=limy0+1+y-31+yy=16(3)等价无穷小替换法x0 sinxxsin-1x tanxxtan-1x ex-1xln1+x ax-1xlna 1-cosxx22 1+x-1x注:若原函数与x互为等价无穷小,则反函数也与x互为等价无穷小例题1、limx0ax+bx21x(a.b>0)解:limx0ax+bx21x=elimx01xlnax+bx2=elimx01xln1+ax+bx-22=elimx0ax-1+bx-12x=ab例题2、limx+ln1+eaxln1+bx(a>0)解:limx+ln1+eaxln1+bx=limx+ln1+eaxbx=limx+bxlneaxe-ax+1=limx+bxlneax+lne-ax+1=limx+bxax+lne-ax+1=ab+limx+blne-ax+1x=ab例题3、limx0lnsinx2+ex-xlnx2+e2x-2x解:limx0lnsinx2+ex-xlnx2+e2x-2x=limx0lnsinx2+ex-xlnx2+e2x-2x=limx0lnsinx2ex+1lnx2e2x+1=limx0sinx2e2xx2ex=1例题4、limx0ex-esinxx-sinx解:limx0ex-esinxx-sinx=limx0esinxex-sinx-1x-sinx=limx0esinxx-sinxx-sinx=1例题5、limx1xx-1x-1解:limx1xx-1x-1=limx1exlnx-1x-1=limx1xlnxx-1令y=x-1原式=limy0y+1lny+1y=1例题6、limx21-sinx+1-sinx1-sinx.>0解:令y=1-sinxlimx21-sinx+1-sinx1-sinx=limy0+1-1-y+1-1-y1-1-y=limy0+y+yy=+(4)1型求极限例题1、limx4tanxtan2x解:解法一(等价无穷小):limx4tanxtan2x=elimx4tan2xlntanx=elimx4tan2xln1+tanx-1=elimx4tan2xtanx-1=elimx42tanx1-tanx2tanx-1=elimx4-2tanx1+tanx=e-1解法二(重要极限):limx4tanxtan2x=limx41+tanx-11tanx-1tan2xtanx-1=elimx4tan2xtanx-1=elimx42tanx1-tanx2tanx-1=elimx4-2tanx1+tanx=e-1(5)夹逼定理(主要适用于数列)例题1、limn1n+2n+3n+4n1n解:4n1n+2n+3n+4n4×4n所以limn1n+2n+3n+4n1n=4推广:ai>0 i=1,2,3mlimna1n+a2n+a3n+amn1n=max1imai例题2、limx0x1x解:1x-11x1x1) x>0 1-xx1x1所以x0+ limx0x1x=12) x<0 1-xx1x1所以x0- limx0x1x=1例题3、limn32×55×78××2n+13n-1解:2n+13n-12n+13nn2032×55×78××2n+13n-132×66×89××2n+13n=n+1223n-2limnn+1223n-2=0所以limn32×55×78××2n+13n-1=0例题4、limnk=n2n+121klimnk=n2n+121k=limn1n2+1n2+1+1n+122n+2n+12xn2n+2n2所以limnxn=2例题5、limnk=1nnk+1-1k解:nknk+1n+1k nnk+11kn+1 1n+1nk+1-1k1n所以nn+1k=1nnk+1-1knnlimnk=1nnk+1-1k=1(6)单调有界定理例题1、limn32×55×78××2n+13n-1解:xn=xn-1×2n+13n-1xn-1*xn单调递减 0xn极限存在,记为A由(*)n求极限得:A=23A所以A=0例题2、x0=1 xn+1=2xn 求limnxn解:xn+1-xn=2xn-2xn-1=2xn-xn-12xn+2xn-1x1-x0=2-1>0xn单调递增xn+1=2xn<2xn+1所以xn+12-2xn+1<00<xn+1<2 极限存在,记为Ln时 L =2L L=2例题3、x1>0 xn+1=a1+xna+xn(a>1)求极限limnxn解:xn+1-xn=a1+xna+xn-a1+xn-1a+xn-1=a2-axn-xn-1a+xna+xn-1x2-x1=a-x12a+x1当x1>a x2-x1<0 xn 当0<x1a xn所以0<xn+1=a1+xna+xn<aa+xna+xn=a 极限存在n时 L=a1+La+L L=a 注:xn单调性有时依赖于x1的选取例题4、x1>1 xn+1=11+xn 求极限limnxn解:xn+1-xn=xn-1-xn1+xn1+xn-1 (整体无单调性)x2n+1-x2n-1=11+x2n-11+x2n-2=x2n-2-x2n1+x2n1+x2n-2=x2n-1-x2n-31+x2n1+x2n-21+x2n-11+x2n-3x3-x1=11+x2-x1<0所以x2n+1单调递减,同理,x2n单调递增有因为0<xn<1(n2)故limnx2n+1和limnx2n均存在,分别记为A,Bx2n+1=11+x2n x2n=11+x2n-1 即A=11+B B=11+A解得 A=B=5-12所以 limnxn=5-12(7)泰勒公式法例题1、设f有n阶连续导数n2fkx0=0 k=1,2,n-1fnx00 nRfx0+h-fx0=hf'x0+h 0<=h<1证明:limh0h=n11-n证明:f'x0+h=f'x0+f"x0h+f3x02!h2+fn-1x0n-2!hn-2+fnn-1!hn-1即f'x0+h=fnn-1!hn-1 x0<<x0+hfx0+h= fx0+fnn!hnfx0+h-fx0=hnfnn! x0<<x0+h fnn!hn=fnn-1!hn-1hn-1=n-1fnfn1n1n-1 h0 limh0h=n-1fnfnn11-n= limh0h=n11-n(8)洛必达法则例题1、求limx1x3-3x+2x3-x2-x+1解:limx1x3-3x+2x3-x2-x+1=limx13x2-33x2-2x-1=limx16x6x-2=32例题2、求limx+2-tan-1x1x解:limx+2-tan-1x1x=limx+-11+x2-1x2=limx+x21+x2=1例题3、求limx+xnex (n为正整数,>0)解:limx+xnex=limx+nxn-1ex=limx+nn-1xn-22ex=limx+n!nex=0 例题4、求limx0+xnlnx n>0解:limx0+xnlnx=limx0+lnxx-n=limx0+1x-nx-n-1=limx0+-xnn=0(9) 利用函数的图像 通过对求解极限方法的研究,我们对极限有了进一步的了解。极限方法是研究变量的一种基本方法,在以后的学习过程中,极限仍然起着重要的作用,因此学习、掌握极限是十分必要的。相信通过对极限的学习总结,我们在今后的学习中能更进一步。专心-专注-专业