工程流体力学习题集及复习资料.docx
第1章绪论选择题【1.1】按连续介质的概念,流体质点是指:()流体的分子;(b)流体内的固体颗粒;(c)几何的点;(d)几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。 ()【1.2】及牛顿内摩擦定律直接相关的因素是:()切应力和压强;(b)切应力和剪切变形速度;(c)切应力和剪切变形;(d)切应力和流速。解:牛顿内摩擦定律是,而且速度梯度是流体微团的剪切变形速度,故。 ()【1.3】流体运动黏度的国际单位是:()m2/s;(b)N/m2;(c)kg/m;(d)N·s/m2。解:流体的运动黏度的国际单位是。 ()【1.4】理想流体的特征是:()黏度是常数;(b)不可压缩;(c)无黏性;(d)符合。解:不考虑黏性的流体称为理想流体。 ()【1.5】当水的压强增加一个大气压时,水的密度增大约为:()1/20 000;(b)1/1 000;(c)1/4 000;(d)1/2 000。解:当水的压强增加一个大气压时,其密度增大约。 ()【1.6】从力学的角度分析,一般流体和固体的区别在于流体:()能承受拉力,平衡时不能承受切应力;(b)不能承受拉力,平衡时能承受切应力;(c)不能承受拉力,平衡时不能承受切应力;(d)能承受拉力,平衡时也能承受切应力。解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。 ()【1.7】下列流体哪个属牛顿流体:()汽油;(b)纸浆;(c)血液;(d)沥青。解:满足牛顿内摩擦定律的流体称为牛顿流体。 ()【1.8】时空气和水的运动黏度,这说明:在运动中()空气比水的黏性力大;(b)空气比水的黏性力小;(c)空气及水的黏性力接近;(d)不能直接比较。解:空气的运动黏度比水大近10倍,但由于水的密度是空气的近800倍,因此水的黏度反而比空气大近50倍,而黏性力除了同流体的黏度有关,还和速度梯度有关,因此它们不能直接比较。 () 【1.9】液体的黏性主要来自于液体:()分子热运动;(b)分子间内聚力;(c)易变形性;(d)抗拒变形的能力。解:液体的黏性主要由分子内聚力决定。 ()第2章 流体静力学选择题:【2.1】 相对压强的起算基准是:()绝对真空;(b)1个标准大气压;(c)当 地大气压;(d)液面压强。解:相对压强是绝对压强和当地大气压之差。 (c)【2.2】 金属压力表的读值是:()绝对压强;(b)相对压强;(c)绝对压强加当地大气压;(d)相对压强加当地大气压。 解:金属压力表的读数值是相对压强。 (b)【2.3】 某点的真空压强为65 000Pa,当地大气压为0.1MPa,该点的绝对压强为:()65 000 Pa;(b)55 000 Pa;(c)35 000 Pa;(d)165 000 Pa。解:真空压强是当相对压强为负值时它的绝对值。故该点的绝对压强。 (c)【2.4】 绝对压强及相对压强p、真空压强、当地大气压之间的关系是:();(b);(c);(d)。解:绝对压强当地大气压相对压强,当相对压强为负值时,其绝对值即为真空压强。即,故。 (c)【2.5】 在封闭容器上装有U形水银测压计,其中1、2、3点位于同一水平面上,其压强关系为:()p1>p> p3;(b)p1=p= p3;(c)p1<p< p3;(d)p2<p1<p3。解:设该封闭容器内气体压强为,则,显然,而,显然。 (c)【2.6】 用形水银压差计测量水管内、两点的压强差,水银面高度hp10cm,pA-pB为:()13.33kPa;(b)12.35kPa;(c)9.8kPa;(d)6.4kPa。解:由于故。 (b)【2.7】在液体中潜体所受浮力的大小:()及潜体的密度成正比;(b)及液体的密度成正比;(c)及潜体的淹没深度成正比;(d)及液体表面的压强成反比。解:根据阿基米德原理,浮力的大小等于该物体所排开液体的重量,故浮力的大小及液体的密度成正比。 (b)【2.8】 静止流场中的压强分布规律:()仅适用于不可压缩流体;(b)仅适用于理想流体;(c)仅适用于粘性流体;(d)既适用于理想流体,也适用于粘性流体。解:由于静止流场均可作为理想流体,因此其压强分布规律既适用于理想流体,也适用于粘性流体。 (d)【2.9】 静水中斜置平面壁的形心淹深及压力中心淹深的关系为 :()大于;(b)等于;(c)小于;(d)无规律。解:由于平壁上的压强随着水深的增加而增加,因此压力中心淹深hD要比平壁形心淹深大。 (c)【2.10】流体处于平衡状态的必要条件是:()流体无粘性;(b)流体粘度大;(c)质量力有势;(d)流体正压。解:流体处于平衡状态的必要条件是质量力有势 (c)【2.11】液体在重力场中作加速直线运动时,其自由面及 处处正交:()重力;(b)惯性力;(c)重力和惯性力的合力;(d)压力。解:由于流体作加速直线运动时,质量力除了重力外还有惯性力,由于质量力及等压面是正交的,很显然答案是 (c)计算题:【2.12】试决定图示装置中A、B两点间的压强差。已知h1=500mm,h2=200mm,h3=150mm,h4=250mm ,h5=400mm,酒精1=7 848N/m3,水银2=133 400 N/m3,水3=9 810 N/m3。解:由于 而 因此 即【2.13】试对下列两种情况求A液体中M点处的压强(见图):(1)A液体是水,B液体是水银,y=60cm,z=30cm;(2)A液体是比重为0.8的油,B液体是比重为1.25的氯化钙溶液,y=80cm,z=20cm。解(1)由于 而 (2)【2.14】在斜管微压计中,加压后无水酒精(比重为0.793)的液面较未加压时的液面变化为y=12cm。试求所加的压强p为多大。设容器及斜管的断面分别为A和,。解:加压后容器的液面下降 则 【2.19】 矩形闸门AB宽为1.0m,左侧油深h1=1m ,水深h2=2m,油的比重为0.795,闸门倾角=60º,试求闸门上的液体总压力及作用点的位置。解:设油,水在闸门AB上的分界点为E,则油和水在闸门上静压力分布如图所示。现将压力图F分解成三部分,而, 其中 油水故总压力设总压力作用在闸门AB上的作用点为D,实质是求水压力图的形状中心离开A点的距离。由合力矩定理,故或者 【2.24】如图所示一储水容器,容器壁上装有3个直径为d=0.5m的半球形盖,设h=2.0m,H=2.5m,试求作用在每个球盖上的静水压力。解:对于盖,其压力体体积为(方向)对于b盖,其压力体体积为(方向)对于盖,静水压力可分解成水平及铅重两个分力,其中 水平方向分力(方向) 铅重方向分力(方向)【2.30】某空载船由内河出海时,吃水减少了20cm,接着在港口装了一些货物,吃水增加了15cm。设最初船的空载排水量为1 000t,问该船在港口装了多少货物。设吃水线附近船的侧面为直壁,设海水的密度为=1 026kg/m3。解:由于船的最初排水量为,即它的排水体积为,它未装货时,在海水中的排水体积为按题意,在吃水线附近穿的侧壁为直壁,则吃水线附近的水 线面积为 因此载货量第3章流体运动学选择题:【3.1】用欧拉法表示流体质点的加速度等于:();();();()。解:用欧拉法表示的流体质点的加速度为 (d)【3.2】恒定流是:()流动随时间按一定规律变化;()各空间点上的运动要素不随时间变化;()各过流断面的速度分布相同;()迁移加速度为零。解:恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点若流体质点的所有物理量皆不随时间而变化的流动. (b)【3.3】一元流动限于:()流线是直线;()速度分布按直线变化;()运动参数是一个空间坐标和时间变量的函数;()运动参数不随时间变化的流动。解:一维流动指流动参数可简化成一个空间坐标的函数。 (c)【3.4】均匀流是:()当地加速度为零;()迁移加速度为零;()向心加速度为零;()合加速度为零。解:按欧拉法流体质点的加速度由当地加速度和变位加速度(亦称迁移加速度)这两部分组成,若变位加速度等于零,称为均匀流动 (b)【3.5】无旋运动限于:()流线是直线的流动;()迹线是直线的流动;()微团无旋转的流动;()恒定流动。解:无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。 (d)【3.6】变直径管,直径,流速。为:();();();()。解:按连续性方程,故 (c)【3.7】平面流动具有流函数的条件是:()理想流体;()无旋流动;()具有流速势;()满足连续性。解:平面流动只要满足连续方程,则流函数是存在的。 (d)【3.8】恒定流动中,流体质点的加速度:()等于零;()等于常数;()随时间变化而变化;()及时间无关。解:所谓恒定流动(定常流动)是用欧拉法来描述的,指任意一空间点观察流体质点的物理量均不随时间而变化,但要注意的是这并不表示流体质点无加速度。()【3.9】在 流动中,流线和迹线重合:()无旋;()有旋;()恒定;()非恒定。解:对于恒定流动,流线和迹线在形式上是重合的。()【3.10】流体微团的运动及刚体运动相比,多了一项 运动:()平移;()旋转;()变形;()加速。解:流体微团的运动由以下三种运动:平移、旋转、变形迭加而成。而刚体是不变形的物体。()【3.11】一维流动的连续性方程VA=C成立的必要条件是:()理想流体;()粘性流体;()可压缩流体;()不可压缩流体。解:一维流动的连续方程成立的条件是不可压缩流体,倘若是可压缩流体,则连续方程为()【3.12】流线及流线,在通常情况下:()能相交,也能相切;()仅能相交,但不能相切;()仅能相切,但不能相交;()既不能相交,也不能相切。解:流线和流线在通常情况下是不能相交的,除非相交点该处的速度为零(称为驻点),但通常情况下两条流线可以相切。()【3.13】欧拉法 描述流体质点的运动:()直接;()间接;()不能;()只在恒定时能。解:欧拉法也称空间点法,它是占据某一个空间点去观察经过这一空间点上的流体质点的物理量,因而是间接的。而拉格朗日法(质点法)是直接跟随质点运动观察它的物理量 ()【3.14】非恒定流动中,流线及迹线:()一定重合;()一定不重合;()特殊情况下可能重合;()一定正交。解:对于恒定流动,流线和迹线在形式上一定重合,但对于非恒定流动,在某些特殊情况下也可能重合,举一个简单例子,如果流体质点作直线运动,尽管是非恒定的,但流线和迹线可能是重合。()【3.15】一维流动中,“截面积大处速度小,截面积小处速度大”成立的必要条件是:()理想流体;()粘性流体;()可压缩流体;()不可压缩流体。解:这道题的解释同3.11题一样的。()【3.16】速度势函数存在于 流动中:()不可压缩流体;()平面连续;()所有无旋;()任意平面。解:速度势函数(速度势)存在的条件是势流(无旋流动)()【3.17】流体作无旋运动的特征是:()所有流线都是直线;()所有迹线都是直线;()任意流体元的角变形为零;()任意一点的涡量都为零。解:流体作无旋运动特征是任意一点的涡量都为零。()【3.18】速度势函数和流函数同时存在的前提条件是:()两维不可压缩连续运动;()两维不可压缩连续且无旋运动;()三维不可压缩连续运动;()三维不可压缩连续运动。解:流函数存在条件是不可压缩流体平面流动,而速度势存在条件是无旋流动,即流动是平面势流。()计算题【3.19】设流体质点的轨迹方程为其中C1、C2、C3为常数。试求(1)t=0时位于,处的流体质点的轨迹方程;(2)求任意流体质点的速度;(3)用Euler法表示上面流动的速度场;(4)用Euler法直接求加速度场和用Lagrange法求得质点的加速度后再换算成Euler法的加速度场,两者结果是否相同。解:(1)以, ,代入轨迹方程,得 故得当时位于流体质点的轨迹方程为(2)求任意质点的速度()(3)若用Euler法表示该速度场由()式解出;即 () ()式对t求导并将()式代入得 (4)用Euler法求加速度场由()式Lagrange法求加速度场为将()式代入()式 得 两种结果完全相同【3.20】已知流场中的速度分布为 (1)试问此流动是否恒定。(2)求流体质点在通过场中(1,1,1)点时的加速度。解:(1)由于速度场及时间t有关,该流动为非恒定流动。(2) 将 代入上式,得【3.22】已知流动的速度分布为其中为常数。(1)试求流线方程,并绘制流线图;(2)判断流动是否有旋,若无旋,则求速度势并绘制等势线。解:对于二维流动的流线微分方程为 即 消去 得 积分 得 或者 若取一系列不同的数值,可得到流线族双曲线族,它们的渐近 线为如图 有关流线的指向,可由流速分布来确定。 对于 ,当时,当时, 对于 , 当时,当时,据此可画出流线的方向判别流动是否有旋,只要判别是否为零,所以流动是有旋的,不存在速度势。【3.29】下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1), (2), 式中、是常数。解:(1)判别流动是否有旋,只有判别是否等于零。所以 流动为有旋流动。角变形所以流动无角变形。(2)故流动为无旋 同理【3.30】已知平面流动的速度分布,。试确定流动:(1)是否满足连续性方程;(2)是否有旋;(3)如存在速度势和流函数,求出和。 解:(1)由是否为零 得 故满足连续性方程 (2)由二维流动的 得 故流动有旋 (3)此流场为不可压缩流动的有旋二维流动,存在流函数 而速度势不存在 积分得 故 因此(常数可以作为零)第4章理想流体动力学选择题【4.1】 如图等直径水管,AA为过流断面,BB为水平面,1、2、3、4为面上各点,各点的运动参数有以下关系:();();();()。解:对于恒定渐变流过流断面上的动压强按静压强的分布规律,即 ,故在同一过流断面上满足 ()【4.2】伯努利方程中表示()单位重量流体具有的机械能;()单位质量流体具有的机械能;()单位体积流体具有的机械能;()通过过流断面流体的总机械能。解:伯努利方程表示单位重量流体所具有的位置势能、压强势能和动能之和或者是总机械能。故 ()【4.3】水平放置的渐扩管,如忽略水头损失,断面形心的压强,有以下关系:();();();()不定。解:水平放置的渐扩管由于断面1和2形心高度不变,但因此()【4.4】粘性流体总水头线沿程的变化是:()沿程下降;()沿程上升;()保持水平;()前三种情况都有可能。解:粘性流体由于沿程有能量损失,因此总水头线沿程总是下降的 ()【4.5】粘性流体测压管水头线沿程的变化是:()沿程下降;()沿程上升;()保持水平;()前三种情况都有可能。解:粘性流体测压管水头线表示单位重量流体所具有的势能,因此沿程的变化是不一定的。 ()计算题【4.6】如图,设一虹吸管a=2m,h=6m,d=15cm。试求:(1)管内的流量;(2)管内最高点S的压强;(3)若h不变,点S继续升高(即a增大,而上端管口始终浸入水内),问使吸虹管内的水不能连续流动的a值为多大。解:(1)以水箱底面为基准,对自由液面上的点1和虹吸管下端出口处2建立1-2流线伯努利方程,则其中,则 管内体积流量 (2)以管口2处为基准,对自由液面1处及管内最高点列1-流 线伯努利方程。则其中 ,即9 807即点的真空压强(3)当不变,点增大时,当点的压强等于水的汽化压强时,此时点发生水的汽化,管内的流动即中止。查表,在常温下(15)水的汽化压强为1 697(绝对压强)以管口2为基准,列点的伯努利方程,其中 ,(大气绝对压强)即 本题要注意的是伯努利方程中两边的压强计示方式要相同,由于为绝对压强,因此出口处也要绝对压强。【4.8】如图,水从密闭容器中恒定出流,经一变截面管而流入大气中,已知H=7m,= 0.3,A1=A3=50cm2,A2=100cm2,A4=25cm2,若不计流动损失,试求:(1)各截面上的流速、流经管路的体积流量;(2)各截面上的总水头。解:(1)以管口4为基准,从密闭容器自由液面上0点到变截面管出口处4列04流线伯努利方程,其中 ,即 由连续性原理,由于 故 又由于 故 由于 故 流经管路的体积流量(2)以管口为基准,该处总水头等于,由于不计粘性损失,因此各截面上总水头均等于。【4.9】如图,在水箱侧壁同一铅垂线上开了上下两个小孔,若两股射流在O点相交,试证明。解: 列容器自由液面0至小孔1及2流线的伯努利方程,可得到小孔处出流速度。此公式称托里拆利公式(Toricelli),它在形式上及初始速度为零的自由落体运动一样,这是不考虑流体粘性的结果。由 公式,分别算出流体下落距离所需的时间,其中经过及时间后,两孔射流在某处相交,它们的水平距离相等,即 ,其中 ,因此 即 【4.14】如图,一消防水枪,向上倾角水管直径D=150mm,压力表读数p=3m水柱高,喷嘴直径d=75mm,求喷出流速,喷至最高点的高程及在最高点的射流直径。解:不计重力,对压力表截面1处至喷咀出口2处列伯努利方程 其中 得 另外,由连续方程 得 上式代入式得 因此 设最高点位置为,则根据质点的上抛运动有 射流至最高点时,仅有水平速度,列喷咀出口处2至 最高点处3的伯努利方程(在大气中压强均为零)。 得 或者水平速度始终是不变的 由连续方程,最高点射流直径为 故【4.15】如图,水以V=10m/s的速度从内径为50mm的喷管中喷出,喷管的一端则用螺栓固定在内径为100mm水管的法兰上,如不计损失,试求作用在连接螺栓上的拉力。解:由连续方程故对喷管的入口及出口列总流伯努利方程其中得取控制面,并建立坐标如图,设喷管对流体的作用力为。 动量定理为即故则作用在连接螺栓上的拉力大小为220.8方向同方向相反.第7章 粘性流体动力学选择题:7.1 速度v、长度l、重力加速度g的无量纲集合是:(a);(b);(c);(d)。解:()。7.2 速度v、密度、压强p的无量纲集合是:(a);(b);(c);(d)。 解:()。7.3 速度v、长度l、时间t的无量纲集合是:(a);(b);(c);(d)。解:()。7.4 压强差、密度、长度l、流量Q的无量纲集合是:(a);(b);(c);(d)。解:()。7.5 进行水力模型实验,要实现有压管流的动力相似,应选的相似准则是:(a)雷诺准则;(b)弗劳德准则;(c)欧拉准则;(d)其它。解:对于有压管流进行水力模型实验,主要是粘性力相似,因此取雷诺数相等()7.6 雷诺数的物理意义表示:(a)粘性力及重力之比;(b)重力及惯性力之比;(c)惯性力及粘性力之比;(d)压力及粘性力之比。解:雷诺数的物理定义是惯性力及粘性力之比()7.7 压力输水管模型实验,长度比尺为8,模型水管的流量应为原型输水管流量的:(a)1/2;(b)1/4;(c)1/8;(d)1/16。解:压力输水管模型实验取雷诺数相等即,若, 则,而()7.8判断层流或紊流的无量纲量是:(a)弗劳德数;(b)雷诺数;(c)欧拉数;(d)斯特劳哈尔数。解:判断层流和紊流的无量纲数为雷诺数,当为层流,否则为紊流。(b)7.9在安排水池中的船舶阻力试验时,首先考虑要满足的相似准则是:(a)雷诺数;(b)弗劳德数;(c)斯特劳哈尔数;(d)欧拉数。 解:在安排船模阻力试验时,理论上要满足雷诺准则和弗劳德准则,但数和数同时分别相等是很难实现的,而且数相等在试验条件又存在困难,因此一般是取实船 和船模的弗劳德数相等。(b)7.10弗劳德数代表的是 之比:(a)惯性力及压力;(b)惯性力及重力;(c)惯性力及表面张力;(d)惯性力及粘性力。 解:(b)7.11在安排管道阀门阻力试验时,首先考虑要满足的相似准则是:(a)雷诺数;(b)弗劳德数;(c)斯特劳哈尔数;(d)欧拉数。 解:由于管道阀门阻力试验是粘性阻力,因此应满足雷诺数相等。(b)7.12欧拉数代表的是 之比:(a)惯性力及压力;(b)惯性力及重力;(c)惯性力及表面张力;(d)惯性力及粘性力。 解:()第8章 圆管中的流动选择题:8.1 水在垂直管内由上向下流动,相距l的两断面间,测 压管水头差h,两断面间沿程水头损失,则:(a);(b);(c);(d)。 解:上测压管断面为1,下测压管断面为2,设上测压管高度为,下测压管高度为,列12伯努利方程,由于速度相等,故,故,答案为()。8.2 圆管流动过流断面上的切应力分布为:(a)在过流 断面上是常数;(b)管轴处是零,且及半径成正比;(c)管壁处是零,向管轴线性增大;(d)按抛物线分布。解:由于圆管中呈层流,过流断面上速度分布为抛物线分布,设为,由牛顿内摩擦定律(c为常数),故在管轴中心处,切应力为零,处,切应力为最大,且及半径成正比,称为切应力呈K字分布,答案(b)。8.3 在圆管流动中,紊流的断面流速分布符合:(a)均匀规律;(b)直线变化规律;(c)抛物线规律;(d)对数曲线规律。 解:由于紊流的复杂性,圆管的紊流速度分布由半经验公式确定符合对数分布规律或者指数分布规律。答案(d)。8.4 在圆管流动中,层流的断面流速分布符合:(a)均匀规律;(b)直线变化规律;(c)抛物线规律;(d)对数曲线规律。解:对圆管层流流速分布符合抛物线规律。答案(c)。8.5 变直径管流,小管直径,大管直径,两断面雷诺数的关系是:(a);(b);(c);(d)。解:圆管的雷诺数为,由于小管直径处的流速是大管直径处流速的4倍,即,故,答案(d)。8.6 圆管层流,实测管轴上流速为,则断面平均流速为:(a);(b);(c);(d)。 解:圆管层流中,管轴处的流速为最大,而断面平均流速是最大流速的一半,因此平均流速为0.2,答案(c)。8.7 圆管紊流过渡区的沿程摩阻因数:(a)及雷诺数有关;(b)及管壁相对粗糙有关;(c)及及有关;(d)及及管长l有关。解:从实验可知,紊流过渡区的沿程摩阻因数及雷诺数及相对粗糙 度均有关。答案(c)。8.8圆管紊流粗糙区的沿程摩阻因数:(a)及雷诺数有关;(b)及管壁相对粗糙有关;(c)及及有关;(d)及及管长l有关。解:圆管紊流粗糙区又称为阻力平方区,沿程摩阻因数仅及有关, 而及无关。答案(b)。8.9 工业管道的沿程摩阻因数,在紊流过渡区随雷诺数的增加;(a)增加;(b)减少;(c)不变;(d)不定。解:由穆迪图可以看出,工业管道的沿程摩阻因数随雷诺数的增加是 减小的。答案(b)。8.10两根相同直径的圆管,以同样的速度输送水和空气,不会出现情况。水管内为层流状态,气管内为紊流状态;水管,气管内都为层流状态;水管内为紊流状态,气管内为层流状态;水管,气管内都为紊流状态。 解:由于空气的运动粘度大约是水运动粘度的10倍,当这两种流体的相等时,水为层流状态,则空气肯定也层流状态。()8.11圆管内的流动状态为层流时,其断面的平均速度等于最大速度的倍。0.5;1.0;1.5;2.0 解:圆管内的流态为层流时,断面的平均流速是最大速度的0.5倍。()8.12紊流附加切应力是由于而产生的。分子的内聚力;分子间的动量交换;重力;紊流元脉动速度引起的动量交换。 解:紊流的附加切应力是由于紊流脉动,上下层质点相互掺混,动量交换所引起的。()8.13沿程摩阻因数不受数影响,一般发生在。层流区;水力光滑区;粗糙度足够小时;粗糙度足够大时。 解:当雷诺数足够大时,此时为阻力平方区,该区域沿程摩阻因数不受影响,而从穆迪图上看,该区域往往管壁粗糙度足够大。()8.14圆管内的流动为层流时,沿程阻力及平均速度的次方成正比。1;1.5;1.75;2 解:当流动为层流时,沿程阻力及平均速度的1次方成正比。()8.15两根直径不同的圆管,在流动雷诺数相等时,它们的沿程阻力因数。一定不相等;可能相等;粗管的一定比细管的大;粗管的一定比细管的小。 解:在管流中,当流动数相等时,沿程摩阻因数可能相等,也可能不相等,这还要由管壁粗糙度及紊流三个阻力区来决定。() 第九章边界层理论选择题:【9.1】 汽车高速行驶时所受到的阻力主要来自于。汽车表面的摩擦阻力;地面的摩擦阻力;空气对头部的碰撞;尾部的旋涡。解:【9.2】 边界层内的流动特点之一是。粘性力比惯性力重要粘性力及惯性力量级相等压强变化可忽略流动速度比外部势流小。解:在边界层中粘性力和惯性力是同数量级。【9.3】 边界层的流动分离发生在。物体后部零压梯度区逆压梯度区后驻点。解:边界层产生分离的根本原因是由于粘性的存在,条件是逆压梯度的存在。第 14 页