欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2017-2018学年高中数学北师大必修2教学案:复习课(二)解析几何初步Word版含解析.pdf

    • 资源ID:55854446       资源大小:540.67KB        全文页数:15页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2017-2018学年高中数学北师大必修2教学案:复习课(二)解析几何初步Word版含解析.pdf

    复习课(一)立体几何初步空间几何体的三视图、表面积与体积空间几何体的三视图的考查主要有两个方面:一是由几何体考查三视图、二是由三视图还原几何体后求表面积与体积,题型多为选择题、填空题,主要考查空间想象能力,难度低档考点精要 1三视图的画法规则(1)主、俯视图都反映了物体的长度“长对正”;(2)主、左视图都反映了物体的高度“高平齐”;(3)左、俯视图都反映了物体的宽度“宽相等”2表面积(1)多面体的表面积:多面体的各个面都是平面,表面积是各面面积之和(2)旋转体的表面积:S圆柱2 rl2 r2;S圆锥 rl r2;S圆台(Rr)l r2 R2.3体积(1)柱体:V柱体Sh(S为底面面积,h 为高)(2)锥体:V锥体13Sh(S为底面面积,h 为高)(3)台体:V台体13(S上S上S下S下)h.其中 S上,S下分别表示台体的上、下底面面积典例(1)将正方体(如图所示)截去两个三棱锥,得到图所示的几何体,则该几何体的左视图为()(2)(重庆高考)某几何体三视图如图所示,则该几何体的体积为()A.132B.136C.73D.52(3)某空间几何体的三视图如图所示,则该几何体的表面积是()A 124 2 B1882 C 28 D2082 解析(1)图所示的几何体的左视图由点A,D,B1,D1确定外形为正方形,判断的关键是两条对角线AD1和 B1C 是一实一虚,其中要把AD1和 B1C 区别开来,故选B.(2)由三视图可知,原几何体左侧是半圆锥,右侧是圆柱,VV半圆锥V圆柱1213121 122136.文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6文档编码:CI5W3L10Y7X2 HP10H4V8R6Z2 ZT2H8O3T1S6(3)由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图则该几何体的表面积为S212 2242 22242082,故选 D.答案(1)B(2)B(3)D 类题通法 1简单几何体的三视图的问题应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由于放置的位置不同,所画的三视图可能不同(2)看清简单组合体是由哪几个基本元素组成(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置2求不规则几何体的表面积、体积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积、体积,再通过求和或作差求得几何体的表面积、体积题组训练 1.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()解析:选 D由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知侧视图为等腰三角形,且轮廓线为实线,故选D.2一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,则该四棱锥侧面积和体积分别是()A 4 5,8 B4 5,83C 4(51),83D8,8 解析:选 B由题意可知该四棱锥为正四棱锥,底面边长为2,高为 2,侧面上的斜高文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8为22125,所以 S侧41225 45,V1322283.3 如图,正方体 ABCD-A1B1C1D1的棱长为1,E,F 分别为线段AA1,B1C 上的点,则三棱锥D1-EDF 的体积为 _解析:VD1-EDF VF-DD1E13SD1DE AB1312 11116.答案:16与球有关的问题与球有关的组合体是命题的热点,多为选择、填空题,有时也与三视图相结合,主要考查球的表面积与体积的求法,难度低档考点精要 球的表面积与体积(1)球的表面积公式S球4 R2.(2)球的体积公式V球43 R3.典例(1)如图所示,平面四边形ABCD 中,ABADCD1,BD2,BDCD,将其沿对角线BD 折成四面体ABCD,使平面ABD平面BCD.若四面体ABCD 的顶点在同一个球面上,则该球的体积为()A.32 B3C.23 D2(2)若一个底面是正三角形的三棱柱的主视图如图所示,其顶点都在一个球面上,则该球的表面积为_解析(1)如图,取BD 的中点 E,BC 的中点 O,连接 AE,OD,EO,AO.由题意,知ABAD,所以 AEBD.由于平面ABD平面 BCD,所以 AE平面 BCD.因为 ABADCD1,BD2,所以 AE22,EO12,所以 OA32.在 RtBDC 中,OBOCOD12BC32,所以四面体ABCD 的外接球的球心为O,文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8半径为32.所以该球的体积V4332332.(2)由主视图知,三棱柱的底面边长为2,高为 1,外接球的球心在上下两个三角形中心连线的中点上,连接球心和任意一个顶点的线段长为球的半径,则 R21222 3321912(其中 R 为球的半径),则球的表面积S 4 R2 4 1912193.答案(1)A(2)193类题通法 解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的题组训练 1.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1 的半球面上,ABAC,侧面 BCC1B1是半球底面圆的内接正方形,则侧面 ABB1A1的面积为()A 2 B1 C.2 D.22解析:选 C连接 BC1,B1C 交于点 O,则 O 为平面BCC1B1的中心由题意知,球心为侧面BCC1B1的中心 O,BC 为截面圆的直径,所以 BAC 90,则 ABC 的外接圆圆心N 位于 BC 的中点,同理,A1B1C1的外接圆圆心M 位于 B1C1的中点,设正方形BCC1B1的边长为x,在 RtOMC1中,OM x2,MC1x2,OC1R1(R 为球的半径),所以x22x221,即 x2,即 AB AC1,所以侧面ABB1A1的面积为212,选C.2设 A,B,C,D 是球面上的四点,AB,AC,AD 两两互相垂直,且AB3,AC4,AD11,则球的表面积为()A 36 B64C 100 D144解析:选 A三棱锥 A-BCD 的三条侧棱两两互相垂直,所以把它扩展为长方体,它和三棱锥 A-BCD 的外接球是同一个,且体对角线的长为球的直径,若设球的半径为R,则 2R文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T832 421126,故 R3,外接球的表面积S4 R2 36,故选 A.平行关系、垂直关系的证明空间线、面平行与垂直关系的判断与证明是常考热点,多以空间几何体为载体进行考查常以选择、解答题形式出现,难度中档考点精要 1判定线线平行的方法(1)利用定义:证明线线共面且无公共点(2)利用平行公理:证明两条直线同时平行于第三条直线(3)利用线面平行的性质定理:a,a,b?a b.(4)利用面面平行的性质定理:,a,b?ab.(5)利用线面垂直的性质定理:a,b?ab.2判定线面平行的方法(1)利用定义:证明直线a 与平面 没有公共点,往往借助反证法(2)利用直线和平面平行的判定定理:a,b,ab?a.(3)利用面面平行的性质的推广:,a?a.3判定面面平行的方法(1)利用面面平行的定义:两个平面没有公共点(2)利用面面平行的判定定理:a,b,abA,a,b?.(3)垂直于同一条直线的两个平面平行,即a ,a?.(4)平行于同一平面的两个平面平行,即 ,?.4证明直线与平面垂直的方法(1)利用线面垂直的定义:若一条直线垂直于一个平面内的任意一条直线,则这条直线垂直于这个平面符号表示:?a,l a?l.(其中“?”表示“任意的”)(2)利用线面垂直的判定定理:若一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直符号表示:lm,ln,m,n,m nP?l.文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8(3)若两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面符号表示:ab,a?b.(4)利用面面垂直的性质定理:若两平面垂直,则在一个平面内垂直于交线的直线必垂直于另一个平面符号表示:,l,m,ml?m.5证明平面与平面垂直的方法利用平面与平面垂直的判定定理:若一个平面通过另一个平面的垂线,则这两个平面互相垂直符号表示:l,l?.典例 如图所示,在直三棱柱ABC-A1B1C1中,A1B1A1C1,D,E 分别是棱BC,CC1上的点(点 D 不同于点C),且 ADDE,F 为 B1C1的中点求证:(1)平面 ADE平面 BCC1B1;(2)直线 A1F平面 ADE.证明(1)因为三棱柱ABC-A1B1C1是直三棱柱,所以CC1平面ABC.又 AD平面 ABC,所以 CC1AD.又因为 ADDE,CC1DE E,所以 AD平面 BCC1B1.又 AD平面 ADE,所以平面ADE平面 BCC1B1.(2)因为 A1B1A1C1,F 为 B1C1的中点,所以 A1FB1C1.因为 CC1平面 A1B1C1,且 A1F平面 A1B1C1,所以 CC1A1F.又因为 CC1平面 BCC1B1,B1C1平面 BCC1B1,CC1B1C1C1,所以 A1F平面 BCC1B1.由(1)知 AD平面 BCC1B1,所以 A1F AD.又 AD平面 ADE,A1F平面 ADE,所以 A1F平面 ADE.类题通法 1平行、垂直关系的相互转化文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C5 HD8V4V9H5V10 ZN1D7D5N10T8文档编码:CR4U2S1U3C

    注意事项

    本文(2017-2018学年高中数学北师大必修2教学案:复习课(二)解析几何初步Word版含解析.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开