微观经济学课后答案(第五版).doc
西方经济学高鸿业主编第五版第二章练习题参考答案1.已经清楚某一时期内某商品的需求函数为Qd=50-5P,供给函数为Qs=-10+5p。1求均衡价钞票Pe和均衡数量Qe,并作出多少多何图形。2假定供给函数波动,由于破费者收入水平提高,使需求函数变为Qd=60-5P。求出呼应的均衡价钞票Pe和均衡数量Qe,并作出多少多何图形。3假定需求函数波动,由于破费技能水平提高,使供给函数变为Qs=-5+5p。求出呼应的均衡价钞票Pe和均衡数量Qe,并作出多少多何图形。4使用123,阐明静态分析跟比较静态分析的联系跟区不。5使用123,阐明需求变卦跟供给变卦对均衡价钞票和均衡数量标阻碍.解答:(1)将需求函数Qd=50-5P跟供给函数Qs=-10+5P代入均衡条件Qd=Qs,有:50-5P=-10+5P得:Pe=6以均衡价钞票Pe=6代入需求函数Qd=50-5p,得:Qe=50-5*6=20或者,以均衡价钞票Pe=6代入供给函数Qe=-10+5P,得:Qe=-10+5因此,均衡价钞票和均衡数量分不为Pe=6,Qe=20.如图1-1所示.(2)将由于破费者收入提高而发生的需求函数Qd=60-5p跟原供给函数Qs=-10+5P,代入均衡条件Qd=Qs,有:60-5P=-10=5P得Pe=7以均衡价钞票Pe=7代入Qs=60-5p,得Qe=60-5*7=25或者,以均衡价钞票Pe=7代入Qs=-10+5P,得Qe=-10+5*7=25因此,均衡价钞票和均衡数量分不为Pe=7,Qe=25(3)将原需求函数Qd=50-5p跟由于技能水平提高而发生的供给函数Qs=-5+5p,代入均衡条件Qd=Qs,有:50-5P=-5+5P得Pe=5.5以均衡价钞票Pe=5.5代入Qd=50-5p,得Qe=50-5*5.5=22.5或者,以均衡价钞票Pe=5.5代入Qd=-5+5P,得Qe=-5+5*5.5=22.5因此,均衡价钞票和均衡数量分不为Pe=5.5,Qe=22.5.如图1-3所示.(4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互感染下所完成的均衡形状及其特色.也可以说,静态分析是在一个经济模型中按照所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图1-1中,均衡点E确实是一个表白了静态分析特色的点.它是在给定的供求力量的相互感染下所抵达的一个均衡点.在此,给定的供求力量分不用给定的供给函数Qs=-10+5P跟需求函数Qd=50-5p表现,均衡点E存在的特色是:均衡价钞票Pe=6且当Pe=6时,有Qd=Qs=Qe=20;同时,均衡数量Qe=20,妥当Qe=20时,有Pd=Ps=Pe.也可以如斯来理解静态分析:在外生变量包括需求函数的参数(50,-5)以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分不为Pe=6,Qe=20依此类推,以上所描素的关于静态分析的全然要点,在(2)及其图1-2跟(3)及其图1-3中的每一个单独的均衡点Ei(1,2)都失落失落了表白.而所谓的比较静态分析是考察当一切的条件发生变卦时,原有的均衡形状会发生什么变卦,并分析比较新旧均衡形状.也可以说,比较静态分析是考察在一个经济模型中外生变量变卦时对内生变量的阻碍,并分析比较由差异数值的外生变量所决定的内生变量的差异数值,以(2)为例加以阐明.在图1-2中,由均衡点变卦到均衡点,确实是一种比较静态分析.它表现当需求增加即需求函数发生变卦时对均衡点的阻碍.特不明晰,比较新.旧两个均衡点跟可以看到:由于需求增加由20增加为25.也可以如斯理解比较静态分析:在供给函数保持波动的条件下,由于需求函数中的外生变量发生变卦,即其中一个参数值由50增加为60,从而使得内生变量的数值发生变卦,其结果为,均衡价钞票由原本的6上升为7,同时,均衡数量由原本的20增加为25.类似的,使用(3)及其图1-3也可以阐明比较静态分析方法的全然恳求.5由(1)跟(2)可见,当破费者收入水平提高导致需求增加,即表现为需求曲线右移时,均衡价钞票提高了,均衡数量增加了.由(1)跟(3)可见,当技能水平提高导致供给增加,即表现为供给曲线右移时,均衡价钞票着落了,均衡数量增加了.总之,一般地有,需求与均衡价钞票成同倾向变卦,与均衡数量成同倾向变卦;供给与均衡价钞票成反倾向变卦,与均衡数量同倾向变卦.2假定表25是需求函数Qd=500-100P在必定价钞票范畴内的需求表:某商品的需求表价钞票元12345需求量40030020010001求出价钞票2元跟4元之间的需求的价钞票弧弹性。2按照给出的需求函数,求P=2是的需求的价钞票点弹性。3按照该需求函数或需求表作出呼应的多少多何图形,使用多少多何方法求出P=2时的需求的价钞票点弹性。它与2的结果一样吗?解1按照中点公式有:ed=(200/2)(2+4)/(2)/(300+100)/(2)=1.5(2)由于当P=2时,Qd=500-100*2=300,因此,有:=-100*(2/3)=2/33按照图1-4在a点即,P=2时的需求的价钞票点弹性为:或者显然,在此使用多少多何方法求出P=2时的需求的价钞票弹性系数跟2中按照定义公式求出结果是一样的,根本上ed=2/3。3假定下表是供给函数Qs=-2+2P在必定价钞票范畴内的供给表。某商品的供给表价钞票元23456供给量2468101求出价钞票3元跟5元之间的供给的价钞票弧弹性。2按照给出的供给函数,求P=3时的供给的价钞票点弹性。3按照该供给函数或供给表作出呼应的多少多何图形,使用多少多何方法求出P=3时的供给的价钞票点弹性。它与2的结果一样吗?解(1)按照中点公式有:es=4/3(2)由于当P=3时,Qs=-2+2,因此=2*(3/4)=1.5(3)按照图1-5,在a点即P=3时的供给的价钞票点弹性为:es=AB/OB=1.5显然,在此使用多少多何方法求出的P=3时的供给的价钞票点弹性系数跟2中按照定义公式求出的结果是一样的,根本上Es=1.54图1-6中有三条线性的需求曲线AB、AC、AD。1比较a、b、c三点的需求的价钞票点弹性的大小。2比较a、f、e三点的需求的价钞票点弹性的大小。解(1)按照求需求的价钞票点弹性的多少多何方法,可以特不便当地推知:分不处于差异的线性需求曲线上的a、b、e三点的需求的价钞票点弹性是相当的.其因由在于,在这三点上,都有:2按照求需求的价钞票点弹性的多少多何方法,异常可以特不便当地推知:分不处于三条线性需求曲线上的a.e.f三点的需求的价钞票点弹性是不相当的,且有Eda<Edf<Ede其因由在于:在a点有,Eda=GB/OG在f点有,Edf=GC/OG在e点有,Ede=GD/OG在以上三式中,由于GB<GC<GD因此Eda<Edf<Ede5假定某破费者关于某种商品的破费数量Q与收入M之间的函数关系为M=100Q2。求:当收入M=6400时的需求的收入点弹性。解:由以知条件M=100Q2可得Q=M/100因此,有:进一步,可得:不雅观看并分析以上打算过程即其结果,可以觉察,当收入函数M=aQ2(其中a>0为常数)时,那么不管收入M为多少多,呼应的需求的点弹性恒即是1/2.6假定需求函数为Q=MP-N,其中M表现收入,P表现商品价钞票,NN>0为常数。求:需求的价钞票点弹性跟需求的收入点弹性。解由以知条件可得:由此可见,一般地,关于幂指数需求函数Q(P)=MP-N而言,其需求的价钞票价钞票点弹性总即是幂指数的绝对值N.而关于线性需求函数Q(P)=MP-N而言,其需求的收入点弹性总是即是1.7假定某商品市场上有100个破费者,其中,60个破费者置办该市场1/3的商品,且每个破费者的需求的价钞票弹性均为3:不的40个破费者置办该市场2/3的商品,且每个破费者的需求的价钞票弹性均为6。求:按100个破费者合计的需求的价钞票弹性系数是多少多?解:另在该市场上被100个破费者购得的该商品总量为Q,呼应的市场价钞票为P。按照题意,该市场的1/3的商品被60个破费者置办,且每个破费者的需求的价钞票弹性根本上3,因此,单个破费者i的需求的价钞票弹性可以写为;Edi=-(dQi/dP)即dQi/dP=-3P/Q2(i=1,260)(1)且(2)相类似的,再按照题意,该市场1/3的商品被不的40个破费者置办,且每个破费者的需求的价钞票弹性根本上6,因此,单个破费者j的需求的价钞票弹性可以写为:Edj=-(dQ/dP)*(P/Q)=6即dQj/dP=-6Qj/P(j=1,240)(3)且(4)不的,该市场上100个破费者合计的需求的价钞票弹性可以写为:将1式、3式代入上式,得:再将2式、4式代入上式,得:因此,按100个破费者合计的需求的价钞票弹性系数是5。8假定某破费者的需求的价钞票弹性Ed=1.3,需求的收入弹性Em=2.2。求:1在其他条件波动的情况下,商品价钞票着落2%对需求数量标阻碍。(2)在其他条件波动的情况下,破费者收入提高5%对需求数量标阻碍。解(1)由于题知,因此有:因此当价钞票着落2%时,商需求量会上升2.6%.2由于Em=,因此有:即破费者收入提高5%时,破费者对该商品的需求数量会上升11%。9假定某市场上A、B两厂商是破费同种有差异的产品的竞争者;该市场对A厂商的需求曲线为PA=200-QA,对B厂商的需求曲线为PB=300-0.5×QB;两厂商现在的销售情况分不为QA=50,QB=100。求:1A、B两厂商的需求的价钞票弹性分不为多少多?2假定B厂商落价后,使得B厂商的需求量增加为QB=160,同时使竞争对手A厂商的需求量增加为QA=40。那么,A厂商的需求的交叉价钞票弹性EAB是多少多?3假定B厂商追求销售收入最大年夜化,那么,你认为B厂商的落价是一个精确的选择吗?解1关于A厂商:由于PA=200-50=150且A厂商的需求函数可以写为;QA=200-PA因此关于B厂商:由于PB=300-0.5×100=250且B厂商的需求函数可以写成:QB=600-PB因此,B厂商的需求的价钞票弹性为:2当QA1=40时,PA1=200-40=160且当PB1=300-0.5×160=220且因此4由(1)可知,B厂商在PB=250时的需求价钞票弹性为EdB=5,也确实是说,关于厂商的需假如富有弹性的.我们清楚,关于富有弹性的商品而言,厂商的价钞票跟销售收入成反倾向的变卦,因此,B厂商将商品价钞票由PB=250着落为PB1=220,将会增加其销售收入.具体地有:落价前,当PB=250且QB=100时,B厂商的销售收入为:TRB=PB·QB=250·100=25000落价后,当PB1=220且QB1=160时,B厂商的销售收入为:TRB1=PB1·QB1=220·160=35200显然,TRB<TRB1,即B厂商落价增加了它的收入,因此,关于B厂商的销售收入最大年夜化的目标而言,它的落价举措是精确的.10假定肉肠跟面包是残缺互补品.人们素日以一根肉肠跟一个面包卷为比率做一个热狗,同时以知一根肉肠的价钞票即是一个面包的价钞票.(1)求肉肠的需求的价钞票弹性.(2)求面包卷对肉肠的需求的交叉弹性.(3)假定肉肠的价钞票面包的价钞票的两倍,那么,肉肠的需求的价钞票弹性跟面包卷对肉肠的需求的交叉弹性各是多少多?解:(1)令肉肠的需求为X,面包卷的需求为Y,呼应的价钞票为PX,PY,且有PX=PY,.该题目标成效最大年夜化征询题可以写为:MaxU(X,Y)=minX,Ys.t.解上速方程组有:X=Y=M/PX+PY由此可得肉肠的需求的价钞票弹性为:由于一根肉肠跟一个面包卷的价钞票相当,因此,进一步,有Edx=Px/PX+PY=1/2(2)面包卷对肉肠的需求的交叉弹性为:由于一根肉肠跟一个面包卷的价钞票相当,因此,进一步,Eyx=-Px/PX+PY=-1/2(3)假定PX=2PY,.那么按照上面(1),(2)的结果,可得肉肠的需求的价钞票弹性为:面包卷对肉肠的需求的交叉弹性为:11使用图阐述需求的价钞票弹性的大小与厂商的销售收入之间的关系,并举例加以阐明。a)当Ed>1时,在a点的销售收入P·Q相当于面积OP1aQ1,b点的销售收入P·Q相当于面积OP2bQ2.显然,面积OP1aQ1面积OP2bQ2。因此当Ed>1时,落价会增加厂商的销售收入,降价会增加厂商的销售收入,即商品的价钞票与厂商的销售收入成反倾向变卦。例:假定某商品Ed=2,当商品价钞票为2时,需求量为20。厂商的销售收入为2×20=40。当商品的价钞票为2.2,即价钞票上升10%,由于Ed=2,因此需求量呼应着落20%,即着落为16。同时,厂商的销售收入=2.2×1.6=35.2。显然,降价后厂商的销售收入反而着落了。b)当Ed1时,在a点的销售收入P·Q相当于面积OP1aQ1,b点的销售收入P·Q相当于面积OP2bQ2.显然,面积OP1aQ1面积OP2bQ2。因此当Ed1时,落价会增加厂商的销售收入,降价会增加厂商的销售收入,即商品的价钞票与厂商的销售收入成正倾向变卦。例:假定某商品Ed=0.5,当商品价钞票为2时,需求量为20。厂商的销售收入为2×20=40。当商品的价钞票为2.2,即价钞票上升10%,由于Ed=0.5,因此需求量呼应着落5%,即着落为19。同时,厂商的销售收入=2.2×1.9=41.8。显然,降价后厂商的销售收入上升了。c)当Ed=1时,在a点的销售收入P·Q相当于面积OP1aQ1,b点的销售收入P·Q相当于面积OP2bQ2.显然,面积OP1aQ1=面积OP2bQ2。因此当Ed=1时,落低或提高价钞票对厂商的销售收入不阻碍。例:假定某商品Ed=1,当商品价钞票为2时,需求量为20。厂商的销售收入为2×20=40。当商品的价钞票为2.2,即价钞票上升10%,由于Ed=1,因此需求量呼应着落10%,即着落为18。同时,厂商的销售收入=2.2×1.8=39.640。显然,降价后厂商的销售收入并波动更。12使用图简明阐明微不雅观经济学的实践零碎框架跟核心思维。解:要点如下:(1)关于微不雅观经济学的实践零碎框架.微不雅观经济学通过对个人经济单位的经济举措的研究,阐明现代西方经济社会市场机制的运行跟感染,以及这种运行的路途,或者,也可以复杂的说,微不雅观经济学是通过对个人经济单位的研究来阐明市场机制的资源设置感染的.市场机制亦可称价钞票机制,其全然的要素是需求,供给和均衡价钞票.以需求,供给和均衡价钞票为出发点,微不雅观经济学通过成效论研究破费者追求成效最大年夜化的举措,并由此推导出破费者的需求曲线,进而失落失落市场的需求曲线.破费论.本钞票论跟市场论要紧研究破费者追求利润最大年夜化的举措,并由此推导出破费者的供给曲线,进而失落失落市场的供给曲线.使用市场的需求曲线跟供给曲线,就可以决定市场的均衡价钞票,并进一步理解在一切的个人经济单位追求各自经济益处的过程中,一个经济社会如何在市场价钞票机制的感染下,完成经济资源的设置.其中,从经济资源设置的结果讲,残缺竞争市场最优,操纵市场最差,而操纵竞争市场比较濒临残缺竞争市场,寡头市场比较濒临操纵市场.至此,微不雅观经济学便完成了对图1-8中上半局部所涉及的关于产品市场的内容的研究.为了更残缺地研还价钞票机制对资源设置的感染,市场论又将考察的范畴从产品市场扩大年夜至破费要素市场.破费要素的需求方面的实践,从破费者追求利润最大年夜的化的举措出发,推导破费要素的需求曲线;破费要素的供给方面的实践,从破费者追求成效最大年夜的化的角度出发,推导破费要素的供给曲线.据此,进一步阐明破费要素市场均衡价钞票的决定及其资源设置的效能征询题.如斯,微不雅观经济学便完成了对图1-8中下半局部所涉及的关于破费要素市场的内容的研究.在以上讨论了单个商品市场跟单个破费要素市场的均衡价钞票决定及其感染之后,一般均衡实践讨论了一个经济社会中一切的单个市场的均衡价钞票决定征询题,其结论是:在残缺竞争经济中,存在着一组价钞票(P1.P2.Pm),使得经济中一切的N个市场同时完成供求相当的均衡形状.如斯,微不雅观经济学便完成了对此核心思维即看不见的手情理的证明.在上面完成研究的基础上,微不雅观经济学又进入了标准研究局部,即福利经济学.福利经济学的一个要紧命题是:残缺竞争的一般均衡确实是帕累托最优形状.也确实是说,在帕累托最优的经济效能的意思上,进一步确信了残缺竞争市场经济的设置资源的感染.在讨论了市场机制的感染当前,微不雅观经济学又讨论了市场失落灵的征询题.为了抑制市场失落灵发生的要紧缘故包括操纵.外部经济.大年夜众物品跟不残缺信息.为了抑制市场失落灵导致的资源设置的无效能,经济学家又讨论跟提出了呼应的微不雅观经济政策。(2)关于微不雅观经济学的核心思维。微不雅观经济学的核心思维要紧是论证资源主义的市场经济可以完成无效能的资源设置。通过用英国古典经济学家亚当斯密在其1776年出版的公道易近财富的性质跟缘故的研究一书中提出的、当前又被称为“看不见的手情理的那一段话,来表述微不雅观经济学的核心思维2原文为:“每集团力图使用他的资源,来使其产品能失落失落最大年夜的价值。一般地说,他并不企图增进增加大年夜众福利,也不清楚他所增进的大年夜众福利为多少多。他所追求的仅仅是他集团的安乐,仅仅是他集团的益处。在如斯做时,有一只看不见的手指导他去增进一种目标,而这种目标绝不是他所追求的货色。由于他追逐他自己的益处,他经常增进了社会益处,厥结果要比其他真正增进社会益处时所失落失落的结果为大年夜。第三章练习题参考答案1、已经清楚一件衬衫的价钞票为80元,一份肯德鸡快餐的价钞票为20元,在某破费者关于这两种商品的成效最大年夜化的均衡点上,一份肯德鸡快餐对衬衫的边缘交换率MRS是多少多?解:按照两商品的边缘交换率MRS的定义公式,可以将一份肯德鸡快餐对衬衫的边缘交换率写成:其中:X表现肯德鸡快餐的份数;Y表现衬衫的件数;MRS表现在保持成效水平波动的条件下,破费者增加一份肯德鸡快餐时所需求保持的衬衫破费数量。在该破费者完成关于这两件商品的成效最大年夜化时,在均衡点上有MRSxy=Px/Py即有MRSxy=20/80=0.25它阐明:在成效最大年夜化的均衡点上,破费者关于一份肯德鸡快餐对衬衫的边缘交换率MRS为0.25。2假定某破费者的均衡如图1-9所示。其中,横轴OX1跟纵轴OX2,分不表现商品1跟商品2的数量,线段AB为破费者的预算线,曲线U为破费者的无差异曲线,E点为成效最大年夜化的均衡点。已经清楚商品1的价钞票P1=2元。(1) 求破费者的收入;(2) 求上品的价钞票P2;(3) 写出预算线的方程;(4)求预算线的歪率;(5)求E点的MRS12的值。解:1图中的横截距表现破费者的收入全体置办商品1的数量为30单位,且已经清楚P1=2元,因此,破费者的收入M=2元×30=60。2图中的纵截距表现破费者的收入全体置办商品2的数量为20单位,且由1已经清楚收入M=60元,因此,商品2的价钞票P2歪率=P1/P2=2/3,得P2=M20=3元3由于预算线的一般方法为:P1X1+P2X2=M因此,由1、2可将预算线方程具体写为2X1+3X2=60。4将3中的预算线方程进一步拾掇为X2=-2/3X1+20。特不明晰,预算线的歪率为2/3。5在破费者成效最大年夜化的均衡点E上,有MRS12=MRS12=P1/P2,即无差异曲线的歪率的绝对值即MRS即是预算线的歪率绝对值P1/P2。因此,在MRS12=P1/P2=2/3。3请画出以以下位破费者对两种商品咖啡跟热茶的无差异曲线,同时请对2跟3分不写出破费者B跟破费者C的成效函数。1破费者A喜欢喝咖啡,但对喝热茶无所谓。他总是喜欢有更多杯的咖啡,而从不在意有多少多杯的热茶。2破费者B喜欢一杯咖啡跟一杯热茶一起喝,他从来不喜欢单独只喝咖啡,或者只不喝热茶。3破费者C认为,在任何情况下,1杯咖啡跟2杯热茶是无差异的。4破费者D喜欢喝热茶,但厌恶喝咖啡。解答:1按照题意,抵破费者A而言,热茶是中性商品,因此,热茶的破费数量不会阻碍破费者A的成效水平。破费者A的无差异曲线见图2按照题意,抵破费者B而言,咖啡跟热茶是残缺互补品,其成效函数是U=minX1、X2。破费者B的无差异曲线见图3按照题意,抵破费者C而言,咖啡跟热茶是残缺交换品,其成效函数是U=2X1+X2。破费者C的无差异曲线见图4按照题意,抵破费者D而言,咖啡是厌恶品。破费者D的无差异曲线见图4已经清楚某破费者每年用于商品1跟的商品2的收入为540元,两商品的价钞票分不为P1=20元跟P2=30元,该破费者的成效函数为,该破费者每年置办这两种商品的数量应各是多少多?从中获得的总成效是多少多?解:按照破费者的成效最大年夜化的均衡条件:MU1/MU2=P1/P2其中,由可得:MU1=dTU/dX1=3X22MU2=dTU/dX2=6X1X2因此,有:(1)拾掇得将1式代入预算约束条件20X1+30X2=540,得:X1=9,X2=12因此,该破费者每年置办这两种商品的数量应当为:5、假定某商品市场上只需A、B两个破费者,他们的需求函数各自为跟。1列出这两个破费者的需求表跟市场需求表;按照1,画出这两个破费者的需求曲线跟市场需求曲线。解:1A破费者的需求表为:P012345QAd201612840B破费者的需求表为:P0123456QBd302520151050市场的需求表为:P0123456Qd5041322314502A破费者的需求曲线为:图略B破费者的需求曲线为:图略市场的需求曲线为:图略6、 假定某破费者的成效函数为,两商品的价钞票分不为P1,P2,破费者的收入为M。分不求出该破费者关于商品1跟商品2的需求函数。解答:按照破费者成效最大年夜化的均衡条件:MU1/MU2=P1/P2其中,由以知的成效函数可得:因此,有:拾掇得:即有1一1式代入约束条件P1X1+P2X2=M,有:解得:代入1式得因此,该破费者关于两商品的需求函数为7、令某破费者的收入为M,两商品的价钞票为P1,P2。假定该破费者的无差异曲线是线性的,切歪率为-a。求:该破费者的最优商品组合。解:由于无差异曲线是一条直线,因此该破费者的最优破费选择有三种情况,其中的第一、第二种情况属于边角解。第一种情况:当MRS12>P1/P2时,即a>P1/P2时,如图,成效最大年夜的均衡点E的地位发生在横轴,它表现现在的最优解是一个边角解,即X1=M/P1,X2=0。也确实是说,破费者将全体的收入都置办商品1,并由此抵达最大年夜的成效水平,该成效水平在图中以实线表现的无差异曲线标出。显然,该成效水平高于在既定的预算线上其他任何一个商品组合所能抵达的成效水平,比如那些用虚线表现的无差异曲线的成效水平。第二种情况:当MRS12<P1/P2时,a<P1/P2时,如图,成效最大年夜的均衡点E的地位发生在纵轴,它表现现在的最优解是一个边角解,即X2=M/P2,X1=0。也确实是说,破费者将全体的收入都置办商品2,并由此抵达最大年夜的成效水平,该成效水平在图中以实线表现的无差异曲线标出。显然,该成效水平高于在既定的预算线上其他任何一个商品组合所能抵达的成效水平,比如那些用虚线表现的无差异曲线的成效水平。第三种情况:当MRS12=P1/P2时,a=P1/P2时,如图,无差异曲线与预算线重叠,成效最大年夜化抵达均衡点可以是预算线上的任何一点的商品组合,即最优解为X10,X20,且称心P1X1+P2X2=M。现在所抵达的最大年夜成效水平在图中以实线表现的无差异曲线标出。显然,该成效水平高于在既定的预算线上其他任何一条无差异曲线所能抵达的成效水平,比如那些用虚线表现的无差异曲线的成效水平。8、假定某破费者的成效函数为,其中,q为某商品的破费量,M为收入。求:1该破费者的需求函数;2该破费者的反需求函数;3当,q=4时的破费者剩余。解:1由题意可得,商品的边缘成效为:货币的边缘成效为:因此,按照破费者均衡条件,有:拾掇得需求函数为(2) 由需求函数,可得反需求函数为:3由反需求函数,可得破费者剩余为:以p=1/12,q=4代入上式,那么有破费者剩余:Cs=1/39设某破费者的成效函数为柯布-道格拉斯典范的,即,商品x跟商品y的价钞票格分不为Px跟Py,破费者的收入为M,跟为常数,且1求该破费者关于商品x跟品y的需求函数。2证明当商品x跟y的价钞票以及破费者的收入同时变卦一个比例时,破费者对两种商品的需求关系保持波动。3证明破费者成效函数中的参数跟分不为商品x跟商品y的破费收入占破费者收入的份额。解答:1由破费者的成效函数,算得:破费者的预算约束方程为1按照破费者成效最大年夜化的均衡条件2得3解方程组3,可得45式4即为破费者关于商品x跟商品y的需求函数。上述休需求函数的图形如图2商品x跟商品y的价钞票以及破费者的收入同时变卦一个比例,相当于破费者的预算线变为6其中为一个非零常数。现在破费者成效最大年夜化的均衡条件变为7由于,故方程组7化为8显然,方程组8确实是方程组3,故其解确实是式4跟式5。这阐明,破费者在这种情况下对两商品的需求关系保持波动。3由破费者的需求函数4跟5,可得910关系9的右边正是商品x的破费收入占破费者收入的份额。关系10的右边正是商品y的破费收入占破费者收入的份额。故结论被证明。10基数成效者是求怎么样推导需求曲线的?1基数成效论者认为,商品得需求价钞票取决于商品得边缘成效.某一单位得某种商品的边缘成效越小,破费者甘心支付的价钞票就越低.由于边缘成效递减法那么,随着破费量的增加,破费者为置办这种商品所甘心领获得最便宜钞票即需求价钞票就会越来越低.将每一破费量及其绝对价钞票在图上绘出来,就失落失落了破费曲线.且由于商品需求量与商品价钞票成反倾向变卦,破费曲线是右下方倾歪的.2在只考虑一种商品的条件下,破费者完成成效最大年夜化的均衡条件:MU/P=。由此均衡条件出发,可以打算出需求价钞票,并推导与理解1中的破费者的向右下方倾歪的需求曲线。11用图阐明序数成效论者抵破费者均衡条件的分析,以及在此基础上对需求曲线的推导。解:破费者均衡条件:可抵达的最高无差异曲线跟预算线相切,即MRS12=P1/P2需求曲线推导:从图上看出,在每一个均衡点上,都存在着价钞票与需求量之间逐一对应关系,分不绘在图上,确实是需求曲线X1=f(P1)12用图分析畸形物品、高级物品跟吉芬物品的交换效应跟收入效应,并进一步阐明这三类物品的需求曲线的特色。解:要点如下:1当一种商品的价钞票发生变卦时所引起的该商品需求量的变卦可以分析为两个局部,它们分不是交换效应跟收入效应。交换效应是指仅考虑商品绝对价钞票变卦所导致的该商品需求量的变卦,而不考虑理论收入水平即成效水平变卦对需求量的阻碍。收入成效那么相反,它仅考虑理论收入水平即成效水平变卦导致的该商品需求量的变卦,而不考虑绝对价钞票变卦对需求量的阻碍。2不管是分析畸形品,仍然抵挡品,以致吉分品的交换效应跟收入效应,需求使用的一个要紧分析货色确实是补偿预算线。在图1-15中,以畸形品的情况为例加以阐明。图中,初始的破费者成效最的化的均衡点为a点,呼应的畸形品即商品1的需求为X11。价钞票P1着落当前的成效最大年夜化的均衡点为b点,呼应的需求量为X12。即P1着落的总效应为X11X12,且为增加量,故有总效应与价钞票成反倾向变卦。然后,作一条平行于预算线AB且与原有的无差异曲线相切的补偿预算线FG以虚线表现,呼应的成效最大年夜化的均衡点为c点,同时留心,现在b点的地位肯定处于c点的右边。因此,按照中的阐诉,那么可以失落失落:由给定的代表原无成效水平的无差异曲线U1与代表P1变卦前.后的差异绝对价钞票的即歪率差异预算线.分不相切的a、c两点,表现的是交换效应,即交换效应为X11X13且为增加量,故有交换效应与价钞票成反倾向的变卦;由代表差异的成效水平的无差异曲线U1跟U2分不与两条代表一样价钞票的即歪率一样的预算线FG。AB相切的c、b两点,表现的是收入效应,即收入效应为X13X12且为增加量,故有收入效应与价钞票成反倾向的变卦。最后,由于畸形品的交换效应跟收入效应都分不与价钞票成反倾向变卦,因此,畸形品的总效应与价钞票肯定成反倾向变卦,由此可知,畸形品的需求曲线向右下方倾歪的。关于上等品跟吉分品。在此略去关于这两类商品的具体的图示分析。需求指出的要点是:这两类商品的交换效应都与价钞票成反倾向变卦,而收入效应都与价钞票成一致倾向变卦,其中,大年夜多数的上等品的交换效应大年夜于收入效应,而上等品中的专门商品吉分品的收入效应大年夜于交换效应。因此,大年夜多数上等品的总效应与价钞票成反倾向的变卦,呼应的需求曲线向右下方倾歪,上等品中多数的专门商品即吉分品的总效应与价钞票成同倾向的变卦,呼应的需求曲线向右上方倾歪。基于的分析,因此,在读者自己使用与图相类似的图形来分析上等品跟吉分品的交换效应跟收入效应时,在一般的上等品的情况下,肯定要使b点落在a、c两点之间,而在吉分品的情况下,那么肯定要使b点落在a点的右边。唯由此图,才能符合中实践分析的恳求。第四章练习题参考答案1.1使用短期破费的总产量TP、平均产量AP跟边缘产量MP之间的关系,可以完成对该表的填空,其结果如下表:可变要素的数量可变要素的总产量可变要素平均产量可变要素的边缘产量12222126103248124481224560121266611677010487035/409637-72所谓边缘报酬递减是指短期破费中一种可变要素的边缘产量在抵达最高点当前开始逐步着落的如斯一种普遍的破费现象。此题的破费函数表现出边缘报酬递减的现象,具体地说,由表可见,当可变要素的投入量由第4单位增加到第5单位时,该要素的边缘产量由原本的24着落为12。21.过TPL曲线任何一点的切线的歪率确实是呼应的MPL的值。2连接TPL曲线上热跟一点跟坐标原点的线段的歪率,确实是呼应的APL的值。3当MPL>APL时,APL曲线是上升的。当MPL<APL时,APL曲线是着落的。当MPL=APL时,APL曲线抵达极大年夜值。3.解答:1由破费数Q=2KL-0.5L2-0.5K2,且K=10,可得短期破费函数为:Q=20L-0.5L2-0.5*102=20L-0.5L2-50因此,按照总产量、平均产量跟边缘产量的定义,有以下函数:苏息的总产量函数TPL=20L-0.5L2-50苏息的平均产量函数APL=20-0.5L-50/L苏息的边缘产量函数MPL=20-L2关于总产量的最大年夜值:20-L=0解得L=20因此,苏息投入量为20时,总产量抵达极大年夜值。关于平均产量的最大年夜值:-0.5+50L-2=0L=10负值舍去因此,苏息投入量为10时,平均产量抵达极大年夜值。关于边缘产量的最大年夜值:由苏息的边缘产量函数MPL=20-L可知,边缘产量曲线是一条歪率为负的直线。考虑到苏息投入量总是非负的,因此,L=0时,苏息的边缘产量抵达极大年夜值。3当苏息的平均产量抵达最大年夜值时,肯定有APL=MPL。由2可知,当苏息为10时,苏息的平均产量APL达最大年夜值,及呼应的最大年夜值为:APL的最大年夜值=10MPL=20-10=10特不显然APL=MPL=104.解答:1破费函数表现该函数是一个结实投入比例的破费函数,因此,厂商停顿破费时,Q=2L=3K.呼应的有L=18,K=122由Q=2L=3K,且Q=480,可得:L=240,K=160又由于PL=2,PK=5,因此C=2*240+5*160=1280即最小本钞票。5、1思路:先求出苏息的边缘产量与要素的边缘产量按照最优要素组合的均衡条件,拾掇即可得。aK=(2PL/PK)LbcK=(PL/2PK)LdK=3L2思路:把PL=1,PK=1,Q=1000,代人扩大年夜线方程与破费函数即可求出a(b)L=2000K=2000(c)(d)L=1000/3K=10006.(1).因此,此破费函数属于范畴报酬波动的破费函数。2假定在短期破费中,资源投入量波动,以表现;而苏息投入量可变,以L表现。关于破费函数,有:,且这阐明:在短期资源投入量波动的条件下,随着一种可变要素苏息投入量的增加,苏息的边缘产量是递减的。相类似的,在短期苏息投入量波动的条件下,随着一种可变要素资源投入量的增加,资源的边缘产量是递减的。7、1当0=0时,该破费函数表现为范畴保持波动的特色2全然思路:在范畴保持波动,即0=0,破费函数可以把0省去。求出呼应的边缘产量再对呼应的边缘产量求导,一阶导数为负。即可证明边缘产量根本上递减的。8 (1).由题意可知,C=2L+K,为了完成最大年夜产量:MPL/MPK=W/r=2.当C=3000时,得.L=K=1000.Q=1000.(2).同理可得。800=L2/3K1/3.2K/L=2L=K=800C=24009使用图阐明厂商在既定本钞票条件下是怎么样完成最大年夜产量的最优要素组合的。解答:以以以下图为例,要点如下:0分析三条等产量线,Q1、Q2、Q3与等本钞票线AB之间的关系.等产量线Q3尽管高于等产量线Q2。但唯一的等本钞票线AB与等产量线Q3既无交点又无切点。这