小支承板零件冲压工艺及模具设计.doc
小支承板零件冲压工艺及模具设计1、引言 模具工业是 “百业之母“,是工业产品的”效益放大器,各国对模具的美誉很多,美国工业界认为:“模具工业是美国工业的基石”。模具在在现代生产中,是生产各种工业产品的重要工艺装备,它以其特定的形状通过一定的方式使原材料成形。例如,冲压件和锻件是通过冲压或锻造方式使金属材料在模具内发生塑性变形而获得的,金属压铸、塑料、陶瓷、橡胶等金属和非金属制品,绝大多数也是模具成形的。由于模具成形具有优质、高产、省料和低成本等特点,现在已在国民经济中占有非常大的比重。并且随着汽车、计算机、电机、电器和日用工业品等现代社会产品对其产品质量、生产成本和更新换代的速度的越来越高的要求,没有模具是难以想象的。随着国民经济的高速发展,促使模具技术迅速发展,作为生产各种产品的重要工艺装备,模具已发展成为一门产业。国外工业先进国家都拥有上万个模具企业与支持模具企业或为模具企业提供生产装备的企业相组成的强大的产业基础。这是为适应社会产品工业化规模生产的重要条件和特点。如汽车的工业化规模生产需要一大批专业性模具企业为其提供模具,同时根据汽车零件的生产技术要求,这些模具企业还配有相应的先进技术装备,包括数控和计算机数控机床、CAD/CAM系统,以及各种工艺装备。国内相当多的模具企业普及了计算机绘图,应用各种CAD软件进行模具设计。很多搞机械制造厂都正在采用CAD/CAM技术。模具设计是一种经验性较强的设计,设计人员在长期的工作中积累的经验和知识对模具设计起着十分重要的影响。尽管模具CAD技术应用越来越广泛,但目前广为使用的模具CAD技术大都停留在计算机辅助绘图层次,难以胜任对模具开发的高质量、短周期、低成本要求。传统的工艺信息及各类技术资料的管理方式已很难适应现代化生产的要求,因此人们希望借助计算机的信息技术数据库将这些经验和知识有效地管理起来,在节省存储空间和人力资源的同时,能够在用户需要时方便、快捷地调用所需的工艺图文等技术资料。本设计是设计一小支承板落料冲孔复合冲裁模具及弯曲模具。小支承板落料冲孔复合模是一种多工序模,在压力机的一次行程中,板料在一个位置完成落料与冲孔两道工序,极大地提高了生产效率。在实际的生产中采用复合模冲压的优点在于:结构紧凑、生产效率高、制品精度高、制件平直,可充分利用短料或边角余料,具有较好的经济效益。本设计复合模采用倒装结构,凸凹模安装在模具下模座上。倒装复合模废料清理无须二次清理,操作方便安全,生产效率较高。复合模较弯曲模结构更为复杂。设计上主要是对凸模、凹模和凸凹模的设计,其中主要是其工作部分的尺寸设计,以保证制件的精度和质量要求。模具许多零件大多已经标准化,如模架、导柱、模座、卸料螺钉、固定板等。在设计中,只须根据设计需要和标准合理选定。弯曲模设计相对比较简单,弯曲模与复合模的设计过程大致相似。在本设计中采用L型弯曲将材料弯曲成90度小支承板即可。2.小支承板落料冲孔复合模设计2.1小支承板冲裁工艺性分析1)零件工艺性分析本设计是一小支承板落料冲孔复合模及弯曲模,支承板零件简图:如图2-1所示: 图2-1生产批量:大批量材料:08F材料厚度:2mm制造精度:IT10从此零件图形可以看出,此零件必须要有:冲孔、落料和弯曲3道工序,冲裁件的形状简单、对称,周边由简单的曲线组成比较规则,零件上孔与孔和孔与边缘的距离都是b>=2X2=4mm,因此基本上比较好加工。冲裁件的经济精度不高于IT11级,一般要求落料件精度最好低于IT10级,冲孔件最好低于IT9级。支承板零件的加工精度要求为IT10,能达到经济精度,因此适合大批量生产的要求。2) 零件加工工艺方案的确定又由于工件加工要经过3道工序才能完成,所以采用如下方案:根据零件的特殊性制定如下的加工方案方案一:落料冲孔弯曲方案二:落料弯曲冲孔方案三:落料冲孔弯曲下料:该工序重要是准确的计算出毛坯尺寸及排样,特别是在大批量生产中这对于提高材料的利用率有重要意义。冲裁:该工序主要是完成零件的毛坯外形的冲孔和落料。弯曲:该工序主要是完成零件的弯曲成形方案一的工序安排比较合理,减少工序环节,提高经济效益方面比其他两种方案有比较显著的优势。方案二在前两个工序安排还可以,但第三个工序很难加工。方案三跟方案一差不多但是比方案一多道工序在经济上来说比方案一差些。因此首选方案一。3)毛坯展开图尺寸的确定 零件展开图 图2-2根据公式= r + x t其中中性层弯曲半径 r内弯曲半径 t材料厚度 x中性层位移系数中性层的曲率半径和弯曲变形程度有关,当变形程度比较的大时中性层会向内侧移动。r/t=2/2=1变形程度比较的大,由2.1表可知x=0.35 表2.1r/t00.50.50.80.822334>4t0.160.250.250.30.30.350.350.40.40.450.450.5曲率半径= r + x t=2+0.35x2=2.7mm弯曲件展开长度L=L 1+ L2 + (r + x t)/180 = 8+34+8-4+45-4+3.14 /2x 2.7 =91.3mm2.2 冲裁件的排样、搭边与材料利用率的计算1)排样冲裁件在板料或条料上的布置方式,称为冲裁件的排样,简称排样,排样的合理与否,不但影响到材料的经济利用率,降低零件成本,还会影响到模具结构、生产率、制件质量、生产操作方便与安全等。根据零件的外形分析,圆弧垫板形状比较的简单,采用有废料排样即:冲裁件与冲裁件之间,冲裁件于条料侧边均有工艺废料。排样类型:直排,有搭边由于零件形状简单,很明显可采用如图排样方法: 方案一 方案二 图 2-3由于在选择排样方法时除了材料利用率外,还应考虑模具制造和使用是否方便.板料的纤维方向是否满足后续工序的要求等因素。选择方案一,满足后续的弯曲的纤维方向2)搭边排样中相邻的两工件之间的余料或工件与条料边缘间的余料称为搭边。搭边的作用是补偿定位误差,防止由于条料的宽度误差,送料歪斜误差等原因而冲裁出残缺的废品。此外还应保持条料有一定的强度和刚度,保证送料的顺利进行,从而提高制件质量,使凸,凹模刃口沿整个封闭轮廓线冲裁,使受力平衡,提高模具寿命和工件断面质量。 根据资料可知:a=1.2mm a1=2mm其中a1为工件间距,a 为边距 ,如图: 图2-43)材料利用率的计算排样的目的是为了合理利用原材料。衡量排样经济性、合理性的指标是材料的利用率。所谓材料利用率是指冲裁件的实际面积与所用板料面积的百分比。材料利用率的计算公式如下: 一个进距的材料利用率的计算如下: =×100% 式中 A 冲裁件面积(包括内形结构废料),(mm2); n 一个进距内冲裁件数目; b 条料宽度,(mm); h 进距,(mm)。 一张板料上总的材料利用率总的计算如下: 总=()×100% 式中 总 一张板料上冲裁件总数目;L 板料长,(mm);(1)材料的一个进距的利用率由图24可知:条料的宽度我门选择有侧压:由公式 b=(B+2a+)0- b-条料的宽度,mm B零件宽度,mm a冲裁件与条料侧边之间的搭边,mm 条料下料时的下偏差值,mm查得=0.5mm则 b=(30+2X2+0.5)0-0.5=34.50-0.5mm条料进距 h=91.3+15+1.2=107.5mm冲裁零件的总面积经计算得 A=2986.35mm一个进距的材料利用率:=( nA / bh)×100%=2986.35×1/(107.5mm×34.5mm)×100%=80.5%(2)材料的总利用率 板料选择2000mmx1200mm所以每条条料能冲出来的零件数是2000/107.5=18.5个取整18个每块板料可以有条料条数是1200/34.5=34.7个取整34个每块板料有18x34=612个利用率为: 总=612X2986.35/2000X1200=76.2%2.3冲裁间隙冲裁间隙是指冲裁凸模和凹模刃口之间的间隙。单边用间隙用C表示,双边用Z表示。圆形冲裁模双边间隙为 Z=D凹-D凸 式中 D凹冲裁模凹模直径尺寸(mm) D凸 冲裁模凹模直径尺寸(mm) 冲裁间隙是冲裁过程中一个重要的工艺参数,间隙的选取是否合理直接影响到冲裁件质量、冲裁力、冲模的使用寿命和卸料力等。如图: 图 2-51)冲裁间隙的选取冲裁间隙的大小主要与材料的性质及厚度有关,材料越硬,厚度越大,则间隙值应越大。选取间隙值时应结合冲裁件的具体要求和实际的生产条件来考虑。其总的原则应该是在保证满足冲裁件剪断面质量和尺寸精度的前提下,使模具寿命最长。设计时一般采取查表法确定,在冲模制造时,也可按材料厚度的百分比估算。查表2.2选得间隙值为Zmin=0.246、Zmax=0.360(mm)。表2.2 冲裁模刃口始用间隙材料名称08F、10、35、09Mn、Q235、B2厚度t初始间隙ZZminZmax1.00.100.141.20.120.1820.2460.360为了使模具能在较长时间内冲制出合格的零件,提高模具的利用率,一般设计模具时取Zmin作为初始间隙。2.4冲压力计算 冲裁力是设计模具、选择压力机的重要参数。计算冲压力的目的是为了合理地选择冲压设备和设计模具。选用冲压设备的标称压力必须大于所计算的冲裁力,所设计的模具必须能传递和承受所计算的冲裁力,以适应冲裁的要求。冲裁力包括冲裁力、卸料力、推件力、顶件力的计算。1)冲裁力计算冲裁力的大小主要与材料性质、厚度、冲裁件周长、模具间隙大小及刃口锋利程度有关。一般对于普通平刃口的冲裁,其冲裁力F可按下式计算: P=1.3L总tKP 式中: P是冲裁力t 是材料厚度(mm); L总 是冲裁件周长(mm); KP是材料抗冲剪强度(MPa),=(0.7-0.9)b, b为材料抗拉强度。查材料可知:b=(275-365) MPa,为安全起见KP=0.9x365=328.5MPa。 零件展开后的总冲裁周长: L总=2x91.3+15+2x2x3+2x2x5+2x2x3+30=366.5mm 所以:P=1.3x366.5x2x328.5=313KN2)推件力的计算 把落料件从凹模洞口顺着冲裁方向推出去的力叫推件力 查钣金材料加工与制造课本表3-15得 K推=0.055, 公式:推=nK推P n=h/t=6/2=3 P推=3x0.055x313=51.7KN3)顶件力的计算逆着冲裁方向顶出来的力叫顶件力查钣金材料加工与制造课本表3-15得K顶=0.06,公式:P顶=K顶PP顶=0.06x313=18.8KN4)卸料力的计算 从凸模上卸下紧箍着的材料所需的力叫卸料力查钣金材料加工与制造课本表3-15得K卸=0.05,公式:P卸= K卸PP卸=0.05x313=15.7KN 5)总冲压力的计算由于设计的时候采用了弹性卸料装置并向下推件,所以总冲裁力为:由公式:P总=P+P推+ P卸P总=313+51.7+15.7=380.4KN2.5压力中心的计算冲模对工件施加的冲压力合力的中心称为冲压压力中心。要使冲压模具正常工作,必须使压力中心与模柄的中心线重合,使压力中心与所选冲压设备划块的中心重合。从而使在冲裁过程中间隙总是保持稳定,出来的零件质量有保证。 图2-6如图各个尺寸由上面的计算得来可知X方向的冲裁压力中心X=0Y方向的冲裁压力中心的计算:L1=91.3 ,X1=91.3/2L2=2x3,X2=8L3=2x3,X3=8+34=42L4=2x5,X4=91.3L5=15,X5=91.3+Rsin/2=91.3+15=106.3 Y= (2.L1. X1+ 2.L2. X2+2. L3. X3+ L4. X4+ L5. X5)/(2.L1+2.L2+2.L3+L4+L5)=60.7mm所以压力中心的坐标为:(0,60.7)2.6凸、凹模刃口尺寸计算模具刃口尺寸及公差是影响冲裁件精度,因而,正确确定冲裁凸模和凹模刃口的尺寸及公差,是冲模设计的重要环节。1)凸、凹模刃口尺寸公差计算的原则实践证明,落料件的尺寸接近于其凹模刃口尺寸,而冲孔尺寸接近于其凸模刃口尺寸。所以,落料时取凹模作为设计的基准件;冲孔时取凸模作为设计的基准件。计算凸模和凹模尺寸时应遵循的原则如下:(1)冲孔时,先确定凸模刃口尺寸。凸模刃口的基本尺寸取接近或等于孔的最大极限尺寸,以保证凸模磨损在一定范围内也可使用。而凹模的基本尺寸则按凸模刃口的基本尺寸加上一个最小间隙值。(2)落料时,应先确定凹模刃口尺寸。凹模刃口的基本尺寸取接近或等于零件的最小极限尺寸,以保证凹模磨损在一定范围内也能冲出合格的零件。凸模刃口的基本尺寸则按凹模刃口基本尺寸减小一个最小间隙值。(3)在确定模具刃口制造公差时,既要能保证工件的精度要求,又能保证合理的间隙数值。一般模具制造精度比工件精度高23级。如果零件没有标注公差,则对于非圆形件按IT14级来处理,圆形件一般按照IT10级来处理,制件尺寸公差应按“入体”原则标注为单向公差。2)凸、凹模刃口尺寸计算的方法 由于凸模和凹模的加工方法不同,设计时其刃口尺寸计算应分别进行计算。(1)凸模与凹模分开加工采用凸模与凹模分开加工这种方法又称为互换加工,这种方法适合制件的凸、凹模制造相对简单的零件,容易保证精度。这样要分别标注凸模和凹模刃口尺寸与制造公差,为了保证间隙值,应满足以下条件。凸 +凹 Zmax-Zmin 式中 凸 凸模的制造公差; 凹 凹模的制造公差。凸、凹的值见表2.3。表2.3 规则形状冲裁时凸模、凹模的制造公差基本尺寸凸模公差凸凹模公差凹180.0200.02018300.0200.02530800.0200.030下面对冲孔和落料两种情况加以分析讨论。 冲孔冲孔应先确定凸模刃口尺寸,间隙取在凹模上。设工件孔的尺寸为d+,其计算公式为: d凸 = (dx) d凹 = (d凸Zmin) 式中 d凸、d凹 冲孔凸、凹模基本尺寸,mm; 工件制造公差,mm;X 因数,其值可查表2.4。 落料根据刃口尺寸计算原则,落料时应首先确定凹模刃口尺寸。由于基准件凹模的刃口尺寸在磨损后会增大,因此应使凹模的基本尺寸接近工件轮廓的最小极限尺寸,再减小凸模尺寸以保证最小合理间隙值Zmin。仍然是凸模取负偏差,凹模取正偏差。设工件尺寸为D0-,其计算式如下: D凹 = (D x) D凸 =(D凹Zmin) 表 2.4 因数x材料厚度t/mm非圆形x值圆形x值10.750.50.750.5工件公差/ mm10.160.170.350.360.160.16120.200.210.410.420.200.20240.240.250.490.500.240.2440.300.210.590.600.300.30(2)凸模与凹模配合加工对于形状复杂或材料薄的零件,为了保证凸、凹模之间一定的间隙值,必须采用配合加工。此方法是先加工好其中的一件(凸模或凹模)作为基准件,然后以此基准件为标准来加工另一件,使它们之间保持一定的间隙。但用此方法制造的凸、凹模是不能互换的。由于复杂工件形状各部分尺寸性质不同,凸模与凹模磨损情况也不同,所以基准件的刃口尺寸需要按不同方法计算。如图2-7a)为一落料件,应以凹模为基准件,凹模的磨损情况可分为三类:第一类是凹模磨损后增大的尺寸(图中A类尺寸);第二类是凹模磨损后减小的尺寸(图中B类尺寸);第三类是凹模磨损后没有增减的尺寸(图中C类尺寸)。 a)落料件 b) 冲孔件图2-7 落料、冲孔件的尺寸分类同理,对于图2-7b)的冲孔件,应以凸模为基准件,可根据凸模的磨损情况,按图示方法将尺寸分为A、B、C三类。当凸模磨损后,其尺寸的增减情况也是增大、减小、不变这一同样的规律。因此,对于复杂形状的落料件或冲孔件,其模具基准件的刃口尺寸均可按下式计算。 A类: Aj(Amaxx) B类: Bj(Bminx) C类: Cj(Cmin0.5)± 式中 Aj 、 Bj 、 Cj 基准件尺寸,mm;Amax 、Bmin、 Cmin工件极限尺寸,mm; 工件公差,mm。对于与基准件相配合的非基准件凸模或凹模的刃口尺寸和公差一般不在图样上标注,而是仅标注基本尺寸,并注明其公差按基准件凹模或凸模的实际尺寸配做,并保证应留的间隙值。另外,如果按照加工的需要,希望对落料件以凸模为基准,对冲孔件以凹模为基准件,则模具基准件的刃口尺寸可按下列几式计算: A类: Aj(AmaxxZmin) B类: Bj(BminxZmin)C类: Cj(Cmin0.5)± 由上文中间隙选择中,查表得间隙值Zmin0.132mm Zmax0.240 mm对冲孔4-6mm、10mm采用凸、凹模分开加工的方法,其凸、凹模刃口部分尺寸计算如下:查表2.3,得凸、凹模制造公差: 凸=0.020mm 凹=0.020mm较核:Zmax- Zmin0.360-0.246=0.114mm,凸 -凹= 0.04 mm满足Zmax- Zmin凸 -凹条件由于4-6mm、10mm的公差为IT10和零件的厚度为t=2mm。所以,查表2.4得因数x为: x0.75L6凸模=(6+0.75x0.058)-0.020=6.0440.020 L10凸模=(10+0.75x0.058)-0.0.02 0=10.0440.020选用国家标准B型凸模GB2863.2-81选用6.1-0.020选用国家标准B型凸模GB2863.2-81选用10.15-0.020L6凹模=(6.044+0.246)0+0.02=6.290+0.02 L10凸模=(10.044+0.246)0+0.02=10.290+0.02由于支承板落料形状较复杂,故采用配合加工方法,其凸、凹模刃口部分尺寸计算如下:以凹模为基准件,因凹模磨损后,刃口部分尺寸都增大,因此属于A类尺寸。查表2.4,得L8 的 x=1,IT10=0.058 mmL8凹模=(8-0.058)0+0.058/4=7.940+0.015查表2.4,得L30的 x=0.75, IT10=0.084mm L30凹模=(30-0.75x0.084)0+0.084/4=29.940+0.021 则凸凹模的对应的尺寸跟L8凹模保证单面间隙为Zmin/2 Zmax/2配合制造,L30凹模保证双面间隙Zmin Zmax配合制造2.7复合模主要零件凸、凹和凸凹模的结构设计2.7.1凸模的设计1)凸模长度的确定如图: 图2-8计算凸模长度L=h1+h2 =55mm其中: L -凸模总长度(mm); h1-凸模固定板厚度(mm); h2凹模厚度(mm);2)凸模的结构形式与固定方法圆形凸模已趋向于标准化,刃口尺寸L6凸模=6.1-0.020和L10凸凹模=10.15-0.020,拟采用凸模结构及固定形式如图 图 2-9为了增加凸模的强度和刚度,凸模做成台阶式,用固定版固定,台阶处圆滑固定,以避免应力集中。小端是工作部分,其尺寸为所计算的刃口尺寸。中间台阶与凸模固定板过度配合(H7/m6)。最大的台阶保证凸模再卸料时不被拉出。凸模示意图如下: 图2-10 具体零件尺寸请参考附录图纸凸模2.7.2凹模的设计1)凹模外形尺寸的确定本设计凹模采用圆柱形孔口凹模。圆形凹模可按冷冲模国家标准或工厂标准选用,非标准尺寸的凹模的外形尺寸常用经验公式计算确定。凹模厚度的确定件式H=Kb 凹模壁厚(指凹模刃口与外边缘的距离)的确定式见c=(22)H (小型凹模) c=(23)H (大型凹模) 式中b凹模孔的最大宽度,mm; K因数,见表2.5; H凹模厚度, C凹模壁厚。见图: 图 2-11 按上式计算的非标准凹模外形尺寸,可以保证凹模有足够的强度和刚度,一般可不再进行强度校核。表2.5因数K的数值材料厚度t/ mmb/ mm0.512500.30.350.42501000.20.220.28本设计支承板零件,是非标准尺寸凹模,则按上述公式有: b=8+83.3+15=106.3mmH=Kb0.2×106.3 mm21.3 mm c=2H=2×21.3mm =31.95 mm L=b+4H=106.3+4x21.3=192mmB=n+2C=30+2x31.95=115.2mm取整后得凹模厚度21 mm,凹模壁厚32 mm,凹模的长度191mm,凹模的宽度115mm,由上述外形尺寸和查国家标准,可选用200×125×28 CrWMn GB2858.2-81国家标准矩形凹模板制取. 其他尺寸根据凸凹模及固定要求而定(见凹模零件图)。 图2-122)凹模的结构形式(1)凹模的类型按凹模的刃口孔形可分为圆柱形孔口凹模、锥形孔口凹模;按凹模的结构可分为整体式凹模和镶拼式凹模。(2)凹模刃口形式锥形刃口:如图2-13a)所示。冲裁件或废料容易通过,凹模磨损后的修磨量较小。但刃口强度较低,刃口尺寸在修磨后略有增大。适用于形状简单,精度要求不高,材料厚度较薄工件的冲裁。当t2.5mm时,15;当t2.56mm时,30;当采用电火花加工凹模时,420 a) b)图2-13 凹模刃口形式 柱形刃口:如图2-13b)所示。刃口强度较高,修磨后刃口尺寸不变。但孔口容易积存工件或废料,推件力大且磨损大。适用于形状复杂或精度要求较高工件的冲裁。当t<0.5mm时,h=35mm;当t=0.55mm 时,h=510 mm; 当t=510mm时,h=1015mm。在这里,选择图76b)柱形刃口,取h=6mm,b=2mm2.7.3凸凹模外型结构凸凹模的内、外缘均为刃口,内、外缘之间的壁厚取决于冲裁件的尺寸。为保证凸凹模的强度,凸凹模应有一定的壁厚。凸凹模的最小壁厚值m一般可按经验数据决定。不积聚废料的凸凹模最小壁厚值见式。冲裁硬材料时m=2t冲裁软材料时m t 对于倒装复合模,因为孔内会积聚废料,所以最小壁厚要大些,由零件图可以知道m=5mm。其他外形尺寸按零件冲裁要求及固定配合要求而定(见凸凹模零件图)。 图 2-14 凸凹模零件图2.8复合模总体设计与标准零件选用冲压模具零件的分类可按在模具中的作用,分为结构性零件和工艺性零件两大类。结构性零件包括导向零件(导板、导柱和导套等)、固定零件(模座、模柄、凸、凹模固定板和垫板等)及其他紧固零件。工艺性零件包括成型零件(凸模、凹模、凸凹模)、定位零件(定位钉、定位板、挡料销、导正销、侧刃等)和压料、卸料零件(卸料板、压边圈、顶件板和推件板等)。冲压模具已经制定了国家标准,包括模架、典型组合、零部件技术条件等,在设计时可参考标准选用标准零部件。1)模固定板凸、凸凹模都采用固定板来固定,如下是固定板的具体参数。根据国家标准GB2858.2-81,选用固定板:200×125×16 材料:45钢技术条件:按GB2858.2-81的规定2)垫板 凸模垫板按照国家标准GB2858.3-81,选取200×125×6。 材料:45号钢 技术条件:按GB2858.3-81的规定3)定位零件导料销、导正销采用弹簧弹顶挡料装置 6x26 (GB/T2866.5)。条料的送进,由两个导料销控制其垂直于进料方向的位置,由另一挡料销控制去进距。 材料:20号钢 技术条件:渗碳处理0.8-1.2mm,硬度58-62HRC4)卸料装置卸料装置是将材料从凸模上卸下的装置,有固定卸料板和弹性卸料板两种。本设计采用弹性卸料装置。弹性卸料板具有卸料和压料的双重作用。包括弹性元件、卸料螺钉和卸料板。(1)弹性卸料板弹性卸料板一般取515mm。根据综合考虑取14mm。为保证模具能正常安全运行:卸料板与凹模之间的距离应比材料厚度与挡料销高度h之和大56mm,以保证材料能才顺利通过,卸料板在冲模开启状态时,一般应突出凸凹模表面0.51mm。(2)弹性件目前常用的卸料弹性件一般采用的是弹簧和橡胶,在此设计中采用橡胶作为弹性件。如表2.6,选取32×10.5×25材料:聚胺酯弹性体压缩量:F=0.3H=0.3×32=9.6mm表2.6(3)卸料螺钉表2.7 圆柱头内六角卸料螺钉(摘自GB2867.5-81) (mm)圆柱头卸料螺钉M10×60,GB2867.5-81材料:45号钢热处理硬度3540HRC技术条件:GB/T3098.32000的规定数量:6个5)推件装置刚性推件装置:常安装在上模部分。一般推件力是由压力机的横杆通过推杆、顶板、顶杆传给推件块。在这里由于零件形状的特殊性直接由推杆传力给推件块顶板一般装在上模座的孔内,形状按被推下的工件形状来决定。(1)推杆推杆的选择见下表。表2.8 带肩推杆(摘自JB/T7650.1-1994) (mm)