欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学 (21 几类不同增长的函数模型 第2课时)示范教案 新人教A版必修.doc

    • 资源ID:56547517       资源大小:372.50KB        全文页数:7页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学 (21 几类不同增长的函数模型 第2课时)示范教案 新人教A版必修.doc

    第2课时 几类不同增长的函数模型导入新课思路1情景导入国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.思路2直接导入我们知道,对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.推进新课新知探究提出问题在区间(0,+)上判断y=log2x,y=2x,y=x2的单调性.列表并在同一坐标系中画出三个函数的图象.结合函数的图象找出其交点坐标.请在图象上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.由以上问题你能得出怎样结论?讨论结果:在区间(0,+)上函数y=log2x,y=2x,y=x2均为单调增函数.见下表与图3-2-1-12.x0.20.61.01.41.82.22.63.03.4y=2x1.1491.51622.6393.4824.9596.063810.556y=x20.040.3611.963.244.846.67911.56y=log2x-2.322-0.73700.4850.8481.1381.3791.5851.766图3-2-1-12从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16).不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)(4,+).我们在更大的范围内列表作函数图象(图3-2-1-13),x012345678y=2x1248163264128256y=x201491625364964图3-2-1-13容易看出:y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.但是,当自变量x越来越大时,可以看到,y=2x的图象就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图3-2-1-14和下表所示.x01020304050607080y=2x110241.05E+061.07E+091.10E+121.13E+151.15E+181.18E+211.21E+24y=x2010040090016002500360049006400图3-2-1-14一般地,对于指数函数y=ax(a>1)和幂函数y=xn(n>0),通过探索可以发现,在区间(0,+)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.同样地,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax<xn.综上所述,尽管对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有logax<xn<ax.虽然幂函数y=xn(n>0)增长快于对数函数y=logax(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.应用示例思路1例1某市的一家报刊摊点,从报社买进晚报的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:设摊主每天从报社买进x份,显然当x250,400时,每月所获利润才能最大.而每月所获利润=卖报收入的总价付给报社的总价.卖报收入的总价包含三部分:可卖出400份的20天里,收入为20·0.30x;可卖出250份的10天里,收入为10·0.30·250;10天里多进的报刊退回给报社的收入为10·0.05·(x-250).付给报社的总价为30·0.20x.解:设摊主每天从报社买进x份,显然当x250,400时,每月所获利润才能最大.于是每月所获利润y为y=20·0.30x+10·0.30·250+10·0.05·(x-250)-30·0.20x=0.5x+625,x250,400.因函数y在250,400上为增函数,故当x=400时,y有最大值825元.例2某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药的时间(共4次)效果最佳?图3-2-1-15解:(1)依题意,得y=(2)设第二次服药时在第一次服药后t1小时,则t1+=4,t1=4.因而第二次服药应在11:00;设第三次服药在第一次服药后t2小时,则此时血液中含药量应为两次服药量的和,即有t2+(t2-4)+=4,解得t2=9小时,故第三次服药应在16:00;设第四次服药在第一次后t3小时(t3>10),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,(t2-4)+(t2-9)+=4,解得t3=13.5小时,故第四次服药应在20:30.变式训练通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生接受概念的能力f(x)的值愈大,表示接受的能力愈强,x表示提出和讲授概念的时间(单位:分),可有以下的公式:f(x)=(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?解:(1)当0<x10时,f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9,由f(x)的图象,知当x=10时,f(x)max=f(10)=59;当10<x16时,f(x)=59;当16<x30时,f(x)=-3x+107,由f(x)的图象,知f(x)<-3×16+107=59.因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.(2)f(5)=-0.1×(5-13)2+59.9=53.5,f(20)=-3×20+107=47<53.5,开讲后5分钟时学生的接受能力比开讲后20分钟强.点评:解析式与图象的转换是函数应用的重点,关于分段函数问题更应重点训练.思路2例3 2007山东滨州一模,文20一工厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,决定当一次订购量超过100时,每多订购1个,订购的全部零件的单价就降低0.02元,但最低出厂单价不低于51元.(1)一次订购量为多少个时,零件的实际出厂价恰为51元?(2)设一次订购量为x个时,零件的实际出厂价为p元,写出p=f(x).(3)当销售商一次订购量分别为500、1 000个时,该工厂的利润分别为多少?(一个零件的利润=实际出厂价-成本)解:(1)设一次订购量为a个时,零件的实际出厂价恰好为51元,则a=100+50个.(2)p=f(x)=其中xN*.(3)当销售商一次订购量为x个时,该工厂的利润为y,则y=(p-40)x=其中xN*,故当x=500时,y=6000;当x=1000时,y=11000.点评:方程中的未知数设出来后可以参与运算,函数解析式为含x、y的等式.例4甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:图3-2-1-16甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只.乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个.请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数.(2)到第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由.(3)哪一年的规模(即总产量)最大?请说明理由.活动:观察函数图象,学生先思考或讨论后再回答,教师点拨、提示:先观察图象得出相关数据,利用数据找出函数模型.解:由题意可知,甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y甲=0.2x+0.8,乙图象经过(1,30)和(6,10)两点,从而求得其解析式为y乙=-4x+34.(1)当x=2时,y甲=0.2×2+0.8=1.2,y乙=-4×2+34=26,y甲·y乙=1.2×26=31.2.所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万只.(2)第1年出产鳗鱼1×30=30(万只),第6年出产鳗鱼2×10=20(万只),可见,第6年这个县的鳗鱼养殖业规划比第1年缩小了.(3)设当第m年时的规模总产量为n,那么n=y甲·y乙=(0.2m+0.8)(-4m+34)=-0.8m2+3.6m+27.2=-0.8(m2-4.5m-34)=-0.8(m-2.25)2+31.25.因此,当m=2时,nmax=31.2,即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万只.知能训练2007山东高考样题,文18某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.(1)写出图(1)表示的市场售价与时间的函数关系P=f(t);写出图(2)表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(1) (2)图3-2-1-17(注:市场售价和种植成本的单位:元/102kg,时间单位:天)活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正.解:(1)由图(1)可得市场售价与时间的函数关系为f(t)=由图(2)可得种植成本与时间的函数关系为g(t)=(t-150)2+100,0t300.(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t).即h(t)=当0t200时,配方整理,得h(t)=(t-50)2+100,所以当t=50时,h(t)取得区间0,200上的最大值100;当200<t300时,配方整理,得h(t)=(t-350)2+100,所以当t=300时,h(t)取得区间200,300上的最大值87.5.综上,由100>87.5可知,h(t)在区间0,300上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.点评:本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.拓展提升探究内容在函数应用中如何利用图象求解析式.分段函数解析式的求法.函数应用中的最大值、最小值问题.举例探究:(2007山东省青岛高三教学质量检测,理21)某跨国公司是专门生产健身产品的企业,第一批产品A上市销售40天内全部售完,该公司对第一批产品A上市后的国内外市场销售情况进行调研,结果如图3-2-1-18(1)、图3-2-1-18(2)、图3-2-1-18(3)所示.其中图3-2-1-18(1)的折线表示的是国外市场的日销售量与上市时间的关系;图3-2-1-18(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图3-2-1-18(3)的折线表示的是每件产品A的销售利润与上市时间的关系.图3-2-1-18(1)分别写出国外市场的日销售量f(t)、国内市场的日销售量g(t)与第一批产品A上市时间t的关系式;(2)第一批产品A上市后的哪几天,这家公司的国内和国外日销售利润之和超过6 300万元?分析:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式.2.在t0,40上,有几个分界点,请同学们思考应分为几段.3.回忆函数最值的求法.解:(1)f(t)=g(t)=t2+6t(0t40).(2)每件A产品销售利润h(t)=.该公司的日销售利润F(t)=,当0t20时,F(t)=3t(t2+8t),先判断其单调性.设0t1t220,则F(t1)-F(t2)=3t1(t12+8t1)-3t2(t22+8t2)=(t1+t2)(t1-t2)2.F(t)在0,20上为增函数.F(t)max=F(20)=6 000<6 300.当20<t30时,令60(t2+8t)>6 300,则<t<30;当30<t40时,F(t)=60(t2+240)<60(×302+240)=6 300,故在第24、25、26、27、28、29天日销售利润超过6 300万元.点评:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.2.在t0,40上,有几个分界点,t=20,t=30两点把区间分为三段.3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一.课堂小结本节学习了:指数函数、对数函数、二次函数的增长差异.幂函数、指数函数、对数函数的应用.作业课本P107习题3.2A组3、4.设计感想本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图象转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.

    注意事项

    本文(高中数学 (21 几类不同增长的函数模型 第2课时)示范教案 新人教A版必修.doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开