2021年人教版数学必修四三角函数复习讲义.pdf
第一讲 任意角与三角函数诱导公式1.知识要点角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。终边相同的角的表示:终 边 与终 边 相 同(的 终 边 在终 边 所 在 射 线上)2()kkZ。注意:相等的角的终边一定相同,终边相同的角不一定相等.终边在x轴上的角可表示为:,kkZ;终边在y轴上的角可表示为:,2kkZ;终边在坐标轴上的角可表示为:,2kkZ.角 度 与 弧 度 的 互 换 关 系:360=2180=1=0.01745 1=57.30=5718注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.与2的终边关系:任意角的三角函数的定义:设是任意一个角,P(,)x y是的终边上的任意一点(异于原点),精品w o r d 可编辑资料-第 1 页,共 31 页-它与原点的距离是220rxy,那么sin,cosyxrr,tan,0yxx,cotxy(0)y,secrx0 x,csc0ryy。三角函数值 只与角的大小有关,而与终边上点P的位置无关。三角函数线的特征:正弦线 MP“站在x轴上(起点在x轴上)”、余弦线OM“躺在x轴上(起点是原点)”、正切线 AT“站在点(1,0)A处(起点是A)”同角三角函数的基本关系式:1.平方关系:222222sincos1,1tansec,1cotcsc2.倒数关系:sin csc=1,cos sec=1,tan cot=1,3.商数关系:sincostan,cotcossin注意:1.角的任意性。2.同角才可使用。3.熟悉公式的变形形式。三角函数诱导公式:“(2k)”记忆口诀:“奇变偶不变,符号看象限”典型例题例 1求下列三角函数值:(1)cos210o;(2)sin45例 2求下列各式的值:(1)sin(34);(2)cos(60o)sin(210o)精品w o r d 可编辑资料-第 2 页,共 31 页-文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8例 3化简)180sin()180cos()1080cos()1440sin(例 4已知 cos(+)=21,23 a bB.a b c C.a c bD.b c a18.若是第四象限角,则是()A 第一象限B.第二象限C.第三象限期D.第四象限19.若0cos3sin,则sin3cos2sin2cos的值为.20.sin49tan37=_精品w o r d 可编辑资料-第 6 页,共 31 页-文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U821.若是第二象限的角,则2是第象限的角。22.若 角的终边与85角的终边相同,则在0,2上终边与4的角终边相同的角为;23.终边在x轴上的角的集合为,终边在y轴上的角的集合为,终边在坐标轴上的角的集合为。24.已知xxxf11)(,若,2,求)cos()(cosff的值。25.已知21)sin(,求cos)cot()2sin(的值.26.已知:21cossin,求33cossin和44cossin的值。精品w o r d 可编辑资料-第 7 页,共 31 页-文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U827.若 cos 23,是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)的值第二讲 三角函数的图像与性质函数sinyxcosyxtanyx精品w o r d 可编辑资料-第 8 页,共 31 页-文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U81函数BxAy)sin(),(其中00A最大值是BA,最小值是AB,周期是2T,频率是2f,相位是x,初相是;其图象的对称轴是直线)(2Zkkx,凡是该图象与直线By的交点都是该图象的对称中心。2 由 ysinx 的图象变换出 ysin(x)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。3由 yAsin(x)的图象求其函数式:4五点法作 y=Asin(x+)的简图:典例解析例 1(2000全国,5)函数 yxcosx 的部分图象是()图象定义域RR|,2x xkkZ值域 1,1 1,1R奇偶性奇函数偶函数奇函数最小正周期22T;22T;T;对称轴,2xkkZ,xkkZ无对称(,0),kkZ(,0),2kkZ(,0),2kkZ单调递2,2,22kkkZ2,2,kkkZ(,),22kkkZ单调递32,2,22kkkZ2,2,kkkZ无精品w o r d 可编辑资料-第 9 页,共 31 页-文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8例 2试述如何由 y=31sin(2x+3)的图象得到 y=sinx 的图象。例 3(2003 上海春,15)把曲线 ycosx+2y1=0 先沿 x 轴向右平移2个单位,再沿 y 轴向下平移 1 个单位,得到的曲线方程是()A(1y)sinx+2y3=0 B(y1)sinx+2y3=0 C(y+1)sinx+2y+1=0 D(y+1)sinx+2y+1=0 例 4(2003 上海春,18)已知函数 f(x)=Asin(x+)(A0,0,xR)在一个周期内的图象如图所示,求直线 y=3与函数 f(x)图象的所有交点的坐标。精品w o r d 可编辑资料-第 10 页,共 31 页-文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8例 5(1)已知 f(x)的定义域为 0,1,求 f(cosx)的定义域;(2)求函数 y=lgsin(cosx)的定义域;精品w o r d 可编辑资料-第 11 页,共 31 页-文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文档编码:CY8X8T5O7I8 HN8F3J2H9G4 ZA7T4M6O1U8文