反比例函数初三专题复习(20220224203751).pdf
-
资源ID:56611404
资源大小:478.17KB
全文页数:6页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
反比例函数初三专题复习(20220224203751).pdf
反比例函数复习一、知识点梳理:1、反比例函数的概念2、反比例函数的图像3、反比例函数的性质4、反比例函数解析式的确定5、K的绝对值的意义反比例函数涉及到的题目难度多位中档,重点和难点是反比例函数有关的综合问题。二、题目类型:1、反比例函数概念、图像与性质例 1:若反比例函数ykx的图象经过点(3,2),则 k 的值为()A 6B6C 5D5(2)已知反比例函数y1x,下列结论不正确的是()A图象经过点(1,1)B图象在第一、三象限C当 x1 时,0y1 D当 x0 时,y 随着 x 的增大而增大(3)已知点 A(1,y1),B(2,y2),C(-3,y3),都在反比例函数xy6的图象上,则 y1、y2与 y3的大小关系(从小到大)为().A.y3y1y2B.y1y2y3C.y2y1y3D.y3y2y12、反比例函数与几何图形的面积例 2:如图,已知双曲线ykx(k0 时,y 随 x 的增大而增大,则m 的值是()A 1 B小于12的实数C 1 D1 3、双曲线12yy、在第一象限内的图象如图,14yx,过1y上的任意一点A,作x轴的平行线交2y于B,交y轴于 C,若1AOBS,则2y的解析式是4、已知点 A 是反比例函数(0)kykx的图像上一点,ABy轴于点 B,且 ABO的面积为3,则k的值为5、直线122yx交x轴于点A,交y轴于点B,交双曲线kyx于点C,A、D 关于y轴对称,若6S四边形 OBCD,则k6、正比例函数(0)ykx k与反比例函数2yx的图象相交于A、C两点,过 A 作x轴的垂线,交x轴于点 B,过 C 作x轴的垂线,交x轴于点 D,则四边形ABCD的面积为7、如图,(0)ykx k与4yx交于 A、B两点,过A 作ACy轴于点 C,则 BOC的面积为文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U28、过y轴上任意一点P 作x轴的平行线,分别与反比函数4yx和2yx的图象交于A、B 两点,若C为x轴上任意一点,连接AC、BC,则 ABC的面积为二、解答题1、已知点 A 在双曲线 y6x上,且 OA4,过 A 作 AC 垂直 x 轴于 C,OA 的垂直平分线交 OC 于 B.(1)AOC 的面积 _;(2)ABC 的周长为 _2.如图,一次函数ykx2 的图象与反比例函数ymx的图象交于点P,点 P 在第一象限 PA 垂直 x轴于点 A,PB 垂直 y 轴于点 B,一次函数的图象分别交x 轴、y 轴于点 C、D,且 SPBD4,OCOA12.(1)求点 D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x0 时,一次函数的值大于反比例函数的值的x的取值范围3如图,在平面直角坐标系xOy中,矩形 OABC 的顶点 A在 x 轴上,顶点C在 y 轴上,D是 BC的中点,过点 D的反比例函数图象交AB于 E点,连接DE。若 OD=5,tan COD=34。(1)求过点D的反比例函数的解析式;(2)求 DBE的面积;(3)x 轴上是否存在点P使 OPD为直角三角形,若存在,请直接写出P点的坐标。若不存在,请说明理由;文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U24如图,直线2yx与反比例函数ky=x的图象相交于点A(a,3),且与 x 轴相交于点B(1)求该反比例函数的表达式;(2)若 P为 y 轴上的点,且AOP的面积是 AOB的面积的23,请求出点P的坐标(3)写出直线2yx向下平移2 个单位的直线解析式,并求出这条直线与双曲线的交点坐标。文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2文档编码:CK4C8A1K5B7 HL8V8P6X3X3 ZM4Z7H1Y3U2