反比例函数测试题(20220319135726).pdf
-
资源ID:56611424
资源大小:178.83KB
全文页数:6页
- 资源格式: PDF
下载积分:4.3金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
反比例函数测试题(20220319135726).pdf
学习好资料欢迎下载反比例函数测试题湖北省宜昌市宜都陆城一中王华伟一、选择题(每题3 分共 30 分)1、下列函数中,反比例函数是()A、y=x+1 B、y=C、=1 D、3xy=2 2、函数 y1=kx 和 y2=的图象如图,自变量x 的取值范围相同的是()3、函数与在同一平面直角坐标系中的图像可能是()。4、反比例函数 y=(k 0)的图象的两个分支分别位于()象限。A、一、二 B、一、三 C、二、四 D、一、四5、当三角形的面积一定时,三角形的底和底边上的高成()关系。A、正比例函数 B、反比例函数 C、一次函数 D、二次函数精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 6 页 -学习好资料欢迎下载6、若点 A(x1,1)、B(x2,2)、C(x3,3)在双曲线上,则()A、x1x2x3 B、x1x3x2 C、x3x2x1 D、x3x1x27、如图 1:是三个反比例函数y=,y=,y=在 x 轴上的图像,由此观察得到 k1、k2、k3的大小关系为()A、k1k2k3 B、k1k3k2 C、k3k2k1 D、k3k1k28、已知双曲线上有一点 P(m,n)且 m、n 是关于 t 的一元二次方程 t23t+k=0 的两根,且 P 点到原点的距离为,则双曲线的表达式为()A、B、C、D、9、如图 2,正比例函数 y=x 与反比例 y=的图象相交于 A、C两点,AB x 轴于B,CD x 轴于 D,则四边形 ABCD 的面积为()A、1 B、C、2 D、精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 6 页 -文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3学习好资料欢迎下载10、如图 3,已知点 A是一次函数 y=x 的图象与反比例函数的图象在第一象限内的交点,点B在 x 轴的负半轴上,且OA=OB,那么 AOB 的面积为A、2 B、C、D、二、填空(每题 3 分共 30 分)1、已知 y 与(2x+1)成反比例且当 x=0 时,y=2,那么当 x=1 时,y=_。2、如果反比例函数的图象经过点(3,1),那么 k=_。3、设反比例函数的图象经过点(x1,y1)和(x2,y2)且有 y1y2,则 k 的取值范围是 _。4、若点(,)是反比例的图象上一点,当y=6时,则x=_。精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 6 页 -文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3学习好资料欢迎下载5、函数与 y=2x 的图象的交点的坐标是 _。6、如果点(m,2m)在双曲线上,那么双曲线在 _象限。7、已知一次函数 y=ax+b 图象在一、二、三象限,则反比例函数y=的函数值随 x 的增大而 _。8、已知,那么 y与 x 成_比例,k=_,其图象在第 _象限。9、菱形面积为 12cm2,且对角线长分别为x cm 和 y cm,则 y 关于 x 的函数关系式是_。10、反比例函数,当 x0 时,y 随 x 的增大而增大,则 m的值是。三、解答题1、(10 分)数与反比例函数的图象都过 A(,1)点求:(1)正比例函数的解析式;(2)正比例函数与反比例函数的另一个交点的坐标2、(10 分)一次函数的图象与x 轴,y 轴分别交于 A、B两点,与反比例函数的图象交于 C、D两点,如果 A点坐标为(2,0),点 C、D在第一、三象限,且OA=OB=AC=BD,试求一次函数和反比例函数的解析式?精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页,共 6 页 -文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3学习好资料欢迎下载3、(10 分)如图,矩形 ABCD,AB=3,AD=4,以 AD为直径作半圆,为 BC上一动点,可与 B,C重合,交半圆于,设,求出关于自变量的函数关系式,并求出自变量的取值范围.4、(10 分)某蓄水池的排水管每时排水8m3,6 小时(h)可将满水池全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间 t(h)将如何变化?(3)写出 t 与之间的关系式(4)如果准备在 h 内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?5、(10 分)已知反比例函数y=的图象经过点 A(4,),若一次函数 y=x+1的图象沿 x 轴平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与 x 轴的交点坐标?6、(10分)已知反比例函数y=和一次函数 y=2x1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点。(1)求反比例函数的解析式?(2)已知 A在第一象限,是两个函数的交点,求A 点坐标?(3)利用的结果,请问:在x 轴上是否存在点 P,使 AOP 为等腰三角形?精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 6 页 -文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3学习好资料欢迎下载答案:一、DCBBBCCCC 二、-2;3;k-1;二、四;减小;反,-6,二、四;-1 三、1、;(-3,-1)2、;3、,()4、48;减小;4 小时5、(1,0)6、;A(1,1);存在,分别为(1,0)(2,0)精品资料-欢迎下载-欢迎下载 名师归纳-第 6 页,共 6 页 -文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3文档编码:CJ1E9Q9K5L10 HI2L9Q7Q8F5 ZO7B10I5E4M3