欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    反三角函数求导公式的证明.pdf

    • 资源ID:56612613       资源大小:167.73KB        全文页数:5页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    反三角函数求导公式的证明.pdf

    名师推荐精心整理学习必备反三角函数求导公式的证明2.3 反函数的导数,复合函数的求导法则一、反函数的导数设)(yx是直接函数,)(xfy是它的反函数,假定)(yx在Iy内单调、可导,而且0)(y,则反函数)(xfy在间,)(|yxIyyxxI内也是单调、可导的,而且)(1)(yxf (1)证明:xIx,给x以增量x),0(xIxxx由)(xfy在Ix上的单调性可知0)()(xfxxfy于是yxxy1因直接函数)(yx在Iy上单调、可导,故它是连续的,且反函数)(xfy在Ix上也是连续的,当0 x时,必有0y)(11limlim00yyxxyyx即:)(1)(yxf【例 1】试证明下列基本导数公式().(arcsin)().()().(log)ln1112113122xxarctgxxaxax证 1、设yxsin为直接函数,xyarcsin是它的反函数函数yxsin在)2,2(yI上单调、可导,且xycos0因此,在)1,1(xI上,有学习资料总结-名师归纳欢迎下载-欢迎下载 名师归纳-第 1 页,共 5 页 -名师推荐精心整理学习必备yxcos1)arcsin(注意到,当)2,2(y时,0cos y,221sin1cosxyy因此,211)arcsin(xx证 2 设xtgy,)2,2(yI则yarctgx,Ix(,)tgyx在Iy上单调、可导且0cos12yx故2221111cos)(1)(xytgytgyarctgx证 3 axaaaayyxln1ln1)(1)log(类似地,我们可以证明下列导数公式:(arccos)()(ln)xxarcctgxxxx1111122二、复合函数的求导法则如果)(xu在点x0可导,而)(ufy在点)(00 xu可导,则复合函数)(xfy在点x0可导,且导数为)()(000 xufdxdyxx学习资料总结-名师归纳欢迎下载-欢迎下载 名师归纳-第 2 页,共 5 页 -文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2名师推荐精心整理学习必备证明:因)(lim00ufxyu,由极限与无穷小的关系,有)0,0()(0时当uuuufy用0 x去除上式两边得:xuxuufxy)(0由)(xu在x0的可导性有:00ux,0limlim00ux)(limlim000 xuxuufxyxxxuxuufxxx0000limlimlim)()()(00 xuf即)()(000 xufdxdyxx上述复合函数的求导法则可作更一般的叙述:若ux()在开区间Ix可导,yf u()在开区间Iu可导,且xIx时,对应的uIu,则复合函数)(xfy在Ix内可导,且dxdududydxdy (2)复合函数求导法则是一个非常重要的法则,特给出如下注记:学习资料总结-名师归纳欢迎下载-欢迎下载 名师归纳-第 3 页,共 5 页 -文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2名师推荐精心整理学习必备弄懂了锁链规则的实质之后,不难给出复合更多层函数的求导公式。【例 2】)(xfy,求dydx引入中间变量,设vx(),uv(),于是yf u()变量关系是yuvx,由锁链规则有:dydxdydududvdvdx(2)、用锁链规则求导的关键引入中间变量,将复合函数分解成基本初等函数。还应注意:求导完成后,应将引入的中间变量代换成原自变量。【例 3】求yxsin2的导数dydx。解:设ux2,则yusin,ux2,由锁链规则有:dydxdydududxuxux(sin)()(cos)cos2222【例 4】设ytgxln2,求dydx。由锁链规则有dxdvdvdududydxdy21cos112vu(基本初等函数求导)212cos1212xxtg(消中间变量)xsin1由上例,不难发现复合函数求导窍门学习资料总结-名师归纳欢迎下载-欢迎下载 名师归纳-第 4 页,共 5 页 -文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2名师推荐精心整理学习必备中间变量在求导过程中,只是起过渡作用,熟练之后,可不必引入,仅需“心中有链”。然后,对函数所有中间变量求导,直至求到自变量为止,最后诸导数相乘。请看下面的演示过程:)2(2cos121)2(21)2ln(2xxxtgxtgxtgxtgdxdyxxxtgxxxtgsin122cos21)(212cos12122【例 5】证明幂函数的导数公式1)(xx,(为实数)。证明:设yxexln1lnln1)ln(xxexeyxx学习资料总结-名师归纳欢迎下载-欢迎下载 名师归纳-第 5 页,共 5 页 -文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2文档编码:CJ10K3G4Y3M6 HF3R3H1Y1P3 ZJ9G4V2O10X2

    注意事项

    本文(反三角函数求导公式的证明.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开