反比例函数图象和性质教学案(含答案).pdf
1.2 反比例函数图象和性质(2)我预学1有 x 个小朋友平均分20 个苹果,每人分得的苹果y(个/人)与 x(个)之间的函数是_函数,其函数关系式是_.当人数增多时,每人分得的苹果就会减少,这正符合函数xky(k 0),当 x0 时,y 随 x 的增大而 _的性质2 阅读教材中的本节内容后回答:(1)如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线3yx(0 x)上的一个动点,当点B的横坐标逐渐增大时,OAB的面积将会()A逐渐增大B不变C逐渐减小D先增大后减小(2)性质中强调“每一象限”,你是如何理解的?“每一象限”可等价于怎样的数学表达式?我求助:预习后,你或许有些疑问,请写在下面的空白处:B x y O 我梳理个性反思:通过本节课的学习,你一定有很多感想和收获,请写在下面的空白处:我达标1 反比例函数1yx(x0)的图象如图所示,随着 x 值的增大,y 值()A减小B增大C不变D先减小后不变2区一小数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示.设矩形的宽为xcm,长为 ycm,那么这些同学所制作的矩形长y(cm)与宽 x(cm)之间的函数关系的图象大致是()3已知反比例函数xy2,下列结论不正确的是A图象必经过点(1,2)By 随 x 的增大而增大C图象在第二、四象限内D若 x1,则 y 2 反比例函数图象性质当 k0 时,图象所在的每一象限内,函数值 y 随着 x 的增大而减小当 k0 时,图象所在的每一象限内,函数值 y 随着 x 的增大而增大文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S44点 A(2,1)在反比例函数ykx的图像上,当y2 时,x 的取值范围是5 反比例函数xy6图象上有三个点)(11yx,)(22yx,)(33yx,其中3210 xxx,则1y,2y,3y的大小关系是()A321yyyB312yyyC213yyyD123yyy6如图,已知一次函数1yxm(m 为常数)的图象与反比例函数2kyx(k 为常数,0k)的图象相交于点A(1,3)(1)求这两个函数的解析式及其图象的另一交点B的坐标;(2)观察图象,写出使函数值12yy的自变量x的取值范围小贴士:注意不同象限的点,充分结合图象进行判断y x B 111 2 3 3 1 2 A(1,3)知识形成:求解函数变量取值范围时,应先,然后充分利用图象文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4我挑战7下列函数在自变量的取值范围内,函数值y 随 x 的增大而增大的有()xy66yx16yx)0(5xxyA1 个B2 个C3 个D4 个8 下列关于反比例函数的叙述,不正确的是()A.反比例函数y=xk的图像绕原点旋转180后,能与原来的图象重合;B.反比例函数y=xk的图像不与坐标轴相交.C.反比例函数y=xk的图像关于直线y=x 成轴对称.D.反比例函数y=xk,当 k0 时,y 随 x 的增大而减小9如图是三个反比例函数y=xk1,y=xk2,y=xk3在 x 轴上方的图象,由此观察得到k1,k2,k3大小关系是()Ak1k2k3 Bk2k3k1 Ck3k2k1D.k3k1k2 我登峰10已知:如图,正比例函数yax的图象与反比例函数kyx的图象交于点3 2A,(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M mn,是反比例函数图象上的一动点,其中03m,过点M作直线MNx轴,交y轴于点B;过点A作直线ACy轴交x轴于点C,交直线MB于点D当四边形OADM的面积为6 时,请判断线段BM与DM的大小关系,并说明理由小贴士:先可从宏观方面入手,判断k是正数或是负数;同一类别的可固定一变量比较另一Y x OA D M C B 知识链接:反比例函数要在每一象限文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4参考答案1.A2.A3.D4.010 xx或5.B;是;系数为12;3 6.21xy;xy32;(3,1);103xx或7.A8.D 9.C 10.xy6;xy32;30 x;相等文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4文档编码:CG6H6M9Y9Q3 HH5T10V7V7X7 ZZ1O5K2Q10S4