复数知识点.pdf
复 数知识点1.复数的单位为i,它的平方等于 1,即1i2.复数及其相关概念:复数形如 a+bi 的数(其中Rba,);实数当 b=0 时的复数 a+bi,即 a;虚数当0b时的复数 a+bi;纯虚数当 a=0 且0b时的复数 a+bi,即 bi.复数 a+bi 的实部与虚部 a 叫做复数的实部,b叫做虚部(注意a,b 都是实数)复数集 C全体复数的集合,一般用字母C 表示.复数是实数的充要条件:z=a+bi Rb=0(a、bR);zRz=z;ZR22ZZ。复数是纯虚数的充要条件:z=a+bi 是纯虚数a=0 且 b0(a、bR);z是纯虚数或 0Z+z=0;z 是纯虚数 z20。两个复数相等的定义:00babiaRdcbadbcadicbia)特别地,(其中,且.两个复数,如果不全是实数,就不能比较大小.注:若21,zz为复数,则1若021zz,则21zz.()21,zz为复数,而不是实数 2若21zz,则021zz.()若Ccba,,则0)()()(222accbba是cba的必要不充分条件.(当22)(iba,0)(,1)(22accb时,上式成立)2、复数加、减、乘、除法的运算法则:设),(,21Rdcbadiczbiaz,则idbcazz)()(21;ibcadbdaczz)()(21;idcadbcdcbdaczz222221。加法的几何意义:设1OZ,2OZ各与复数z1,z2对应,以1OZ,2OZ为边的平行四边形的对角线OZ就与 z1+z2对应。减法的几何意义:设1OZ,2OZ各与复数z1,z2对应,则图中向量21ZZ所对应的复数就是z2-z1。z1-z2的几何意义是分别与Z1,Z2对应的两点间的距离。3.复平面内的两点间距离公式:21zzd.其中21zz,是复平面内的两点21zz 和所对应的复数,21zzd和表示间的距离.由上可得:复平面内以0z为圆心,r为半径的圆的复数方程:)(00rrzz.曲线方程的复数形式:00zrzz表示以为圆心,r 为半径的圆的方程.21zzzz表示线段21zz的垂直平分线的方程.212121202ZZzzaaazzzz,)表示以且(为焦点,长半轴长为 a 的椭圆的方程(若212zza,此方程表示线段21ZZ,).),(2121202zzaazzzz表示以21ZZ,为焦点,实半轴长为a 的双曲线方程(若212zza,此方程表示两条射线).绝对值不等式:设21zz,是不等于零的复数,则212121zzzzzz.左边取等号的条件是),且(012Rzz,右边取等号的条件是),(012Rzz.212121zzzzzz.左边取等号的条件是),(012Rzz,右边取等号的条件是),(012Rzz.注:nnnAAAAAAAAAA11433221.4.共轭复数:两个复数实部相等,虚部互为相反数。即z=a+bi,则z=a-bi,(a、bR),实数的共轭复数是其本身性质zz2121zzzzazz2,i2bzz(za+bi)22|zzzz2121zzzz2121zzzz2121zzzz(02z)nnzz)(注:两个共轭复数之差是纯虚数.()之差可能为零,此时两个复数是相等的 5.复数的乘方:)(.Nnzzzzznn对任何z,21,zzC及Nnm,有nnnnmnmnmnmzzzzzzzzz2121)(,)(,注:以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如1,142ii若由11)(212142ii就会得到11的错误结论.在实数集成立的2|xx.当x为虚数时,2|xx,所以复数集内解方程不能采用两边平方法.常用的结论:1,1,143424142nnnniiiiiii)(,0321Zniiiinnnn文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2iiiiiiii11,11,2)1(2若是 1 的立方虚数根,即i2321,则.6.复数z是实数及纯虚数的充要条件:zzRz.若0z,z是纯虚数0zz.模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数.特例:零向量的方向是任意的,其模为零.注:|zz.7.复数集中解一元二次方程:在复数集内解关于x的一元二次方程)0(02acbxax时,应注意下述问题:当Rcba,时,若0,则有二不等实数根abx22,1;若=0,则有二相等实数根abx22,1;若0,则有二相等复数根aibx2|2,1(2,1x为共轭复数).当cba,不全为实数时,不能用方程根的情况.不论cba,为何复数,都可用求根公式求根,并且韦达定理也成立.)(0,01,1,121223Znnnn文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2文档编码:CY2J2Y3G2L1 HJ7E4P6M10S5 ZG1R7P7P2P2