反比例函数全章导学案.pdf
学习必备欢迎下载学习课题:1711 反比例函数 的意 义学习目标:1、能给反比例函数下定义;能写出反比例函数几种形式。2、会根据反比例函数的定义解决相关问题。预习案:学法指导:用 10 到 15 分钟阅读课本内容,完成下列问题,将预习中不能解决的问题和疑惑记下来1、形如 y=的式子叫做次函数,当时它是正比例函数。2、体育课上,老师测试了百米赛跑,那么,时间t 与平均速度v 的关系是t=.3 在思考(1)中,当路程s 一定时,速度v 和时间 t 成什么关系?在思考(2)中,当矩形草坪面积一定时,矩形草坪的长与宽成什么关系?在思考(3)中,当北京市的总面积一定时,人均占有的土地面积与全市总人口成什么关系?4、形如 y=的式子叫做反比例函数。是比例系数,比例系数有什么特点?探究案:问题 1、在思考(1)(2)(3)中得到的关系式与一次函数、正比例函数的关系式一样吗?2、这些关系式中的两个量有什么关系?3、反比例函数的自变量x 的取值范围是怎样的?函数值y 的取值范围是什么?4、说说你印象中的反比例函数。xy=15,y=2x-1是反比例函数吗?为什么?学会归纳:从以上探究我们可归纳出:一般的形如y=的式子叫做反比例函数,其中0.也可以写成y=或者 y=的形式【活动 1】问题 1:指出下列哪个等式中的y 是 x 的反比例函数?并把它写成xky的形式。xy4,3xy,y=x3,16xy,123xy,y=-x23,y=x-1,y=25x、思考:反比例函数解析式分母有什么特征?问题 2:当 m取什么值时,函数y=23)2(mxm是反比例函数?【活动 2】已知 y 是 x 的反比例函数,当x=2 时,y=6(1)写出 y 与 x 的函数关系式:(2)求当 x=4 时,y 的值。思考 1:确定反比例函数解析式的关键是什么?思考 2:本题可以设反比例函数解析式的哪种形式?学习必备欢迎下载二、巩固练习1、P40-1、2、3(在书上完成)2、y 是 x 的反比例函数,下表给出了x 与 y 的一些值:x-2-1 21211 3 y 322-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。四、反思归纳1、本节课学习的内容:2、数学思想方法归纳:当堂检测1、下列哪个等式中的y 是 x 的反比例函数?(1)xy32,(2)xy32,(3)01xy,(4)0 xy,(5)yx32 2、函数21xy中的自变量x 的取值范围是三、提升能力:1、若函数12)1(mxmy是反比例函数,则m=2、已知 y 与 x-1 成反比例函数,当x=2 时 y=1,则这个函数的表达式是()A、11xyB、1xkyC、11xyD、11xy3、已知 y 与 x2成反比例,并且当x=3 时 y=4.(1)写出 y 与 x 之间的函数关系式。(2)求 x=1.5 时 y 的值。4、已知 y=y1+y2,y1与 x 成正比例,y2与 x 成反比例,且当x=1 时,y=4;当 x=2 时,y=5.求 y 与 x 的函数关系式文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3学习必备欢迎下载学习课题:1712 反比例函数的图象和性质(1)教学目标:1、会画反比例函数的图像 2、能说出反比例函数图像的性质预习案:学法指导:用 10 到 15 分钟阅读课本内容,完成下列问题,将预习中不能解决的问题和疑惑记下来1、举出反比例函数实例2、用描点法画图象的步骤是_、_、_ 探究案:问题:我们已知道,一次函数y=kx+b(k0)的图象是一条直线,?那么反比例函数y=kx(k 为常数且k 0)的图象是什么样呢?【活动 1】尝试用描点法来画出反比例函数的图象画出反比例函数y=6x和 y=-6x的图象解:列表x-6-5-4-3-2-1 1 2 3 4 5 6 y=6x-1-1.5-2-6 3 1 y=-6x1 1.2 3 6-1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点连线,用平滑的曲线把所描的点依次连接起来864224681510551015文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3学习必备欢迎下载思考:问题1:你认为作反比例函数的图像应该注意哪些问题问题 2:反比例函数的图像可能与坐标轴相交吗?为什么?问题 3:反比例函数y=6x和 y=-6x的图象有什么共同特征?它们之间有什么关系?归纳:反比例函数y=6x和 y=-6x的图象的共同特征:函数解析式y=6xy=-6x图象的形状图象分布的区域图象的变化趋势【活动 2】在同一平面直角坐标系中画出反比例函数y=3x和 y=-3x的图象试结合图象你能说出反比例函数的哪些性质?864224681510551015文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3学习必备欢迎下载学习课题:1712反比例函数的图象和性质(2)教学目标:1、能在同一个坐标下分析正比例函数和反比例函数图像 2、能运用反比例函数的图像与性质预习案:一、观察分析:(课本 P42 思考)y=6x和 y=-6x的图象及y=3x和 y=-3x的图象(作出草图)(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y 随 x 的变化而如何变化?(4)归纳填表:y=6xy=-6xy=3xy=-3x形状所在象限增减性与 x 轴、y 轴是否相交二、探究:【活动3】猜想:反比例函数y=kx(k0)的图象在哪些象限由什么因素决定??在每一个象限内,y 随 x 的变化情况如何?它可能与坐标轴相交吗?归纳:(1)反比例函数y=kx(k 为常数,k0)的图象是双曲线(2)当 k0 时,双曲线的两支分别位于第_象限,在每个象限内,y?值随 x 值的增大而 _(3)当 k0 时,双曲线的两支分别位于第_四象限,在每个象限内,y?值随 x值的增大而 _文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3学习必备欢迎下载例 1 反比例函数y=x2的图象是,在第象限,在第几象限内y 随 x 的增大而增大,在第几象限内y 随 x 的增大而减小.仿照例 1 说说 y=x2、y=x2(x 0)、y=2x、y2x 的图象是什么样的?思考 1:正比例函数的图像有什么特点?思考2:反比例函数的图像有什么特点?例 2、已知反比例函数y=kx的图象经过点A(2,-4)(1)求此函数的解析式(2)画出草图。(3)这个图象在象限,y 随 x 的增大而。(4)点 B(21,-16)、C(-3,5)在这个图象上吗?四、当堂检测1、已知一个反比例函数的图象经过A(3,4).(1)这个函数的图象位于哪些象限?在图象的第一支上,y 随 x 的增大如何变化?(2)点 B(3,4),(2,6)D(3,4)是否在这个函数图象上?1、反比例 函数 y=kx(k 0)的图象经过点(-3,3),则该反比例函数的图像在()A、第一、三象限B、第二、四象限C、第二、三象限D、第一、二象限2、反比例函数y=x2的图象的两支分别在第象限。3、已知反比例函数y=2kx的图象在第一、三象限内,则k 的取值范围是 _ 4、在反比例 函数 y=kx(kx20,则 y1-y2的值为()(A)正数(B)负数(C)非正数(D)非负数6 若一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数y=kbx的图象一定在象限文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3学习必备欢迎下载学习课题:1712反比例函数的图象和性质(3)学习目标:1、能用待定系数法求反比例函数的解析式2、能用反比例函数的定义和性质解决实际问题预习案:学法指导:自学(5分钟)对学(10 分钟)群学(10 分钟)课堂展示:(20 分钟)一、自学例4 思考:1、为什么另一支在第三象限?2、反比例函数xmy5图象位于第一象限,说明m-5 0.二、填表:探究反比例函数图象与性质函数正比例函数反比例函数解析式图象图象的位置增减性三、探究反比例函数图象与性质的应用7、A 是反比例函数xy2(x 0)的图象上任意一点,过A 作 x 轴的垂线,垂足分别为C,连接 OA。(1)先画出草图(2)求 AOC 的面积。例 2、直线 A(-4,2)、B(n,4)是反比例函数的图象y=xm与一次函数的图象的两个相交点,(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一闪函数的值小于反比八角形函数年的值x 的取值范围.文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3文档编码:CR8U1C2K6T4 HQ1W5B7B1T9 ZU2B4H2C8N3学习必备欢迎下载课堂检测:1、右图是反比例函数y=xn7的图象的一支,根据图象回答下列问题:(1)图象的另一支位于哪个象限?常数n 的取值范围是什么?(2)在这个函数图象的某一支上任取点A(a,b)和点 B(a/,b/)。如果 a0,所以 y 一定随 x 的增大而减小