欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021年实变函数测试题与答案.pdf

    • 资源ID:56627278       资源大小:505.57KB        全文页数:29页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021年实变函数测试题与答案.pdf

    实变函数试题一,填空题1.设1,2nAn,1,2nL,则limnnA.2.,a b:,因为存在两个集合之间的一一映射为3.设E是2R中函数1cos,00,0 xyxx的图形上的点所组成的集合,则E,E.4.若集合nER满足EE,则E为集.5.若,是直线上开集G的一个构成区间,则,满足:,.6.设E使闭区间,a b中的全体无理数集,则mE.7.若()nmEfx()0f x,则说()nfx在E上.8.设nER,0nxR,若,则称0 x是E的聚点.9.设()nfx是E上几乎处处有限的可测函数列,()f x是E上几乎处处有限的可测函数,若0,有,则称()nfx在E上依测度收敛于()f x.10.设()()nfxf x,xE,则()nfx的子列()jnfx,使得.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 1 页,共 29 页二,判断题.正确的证明,错误的举反例.1.若,A B可测,AB且AB,则mAmB.2.设E为点集,PE,则P是E的外点.3.点集11,2,EnLL的闭集.4.任意多个闭集的并集是闭集.5.若nER,满足*m E,则E为无限集合.三,计算证明题1.证明:ABCABACUI2.设M是3R空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M为可数集.3.设nER,iEB且iB为可测集,1,2iL.根据题意,若有*0,imBEi,证明E是可测集.4.设P是Cantor集,32ln 1,(),0,1xxPf xxxP.求10(L)()f x dx.5.设函数()f x在Cantor集0P中点x上取值为3x,而在0P的余集中长为13n的构成区间上取值为16n,1,2nL,求10()f x dx.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 2 页,共 29 页文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y8文档编码:CU2X6W7G8P4 HI5U4H7X8S3 ZA5S6B4P9Y86.求极限:13230lim(R)sin1nnxnxdxn x.实变函数试题解答一填空题1.0,2.2.1(,)cos,0(0,)1x yyxyyxU;.3.闭集.4.ba.5.几乎处处收敛于()f x或a.e.收敛于()f x.6.对000,(,)Ux有0Ex.7.()()nfxf xa.e.于E.二判断题1.F.例如,(0,1)A,0,1B,则AB且AB,但1mAmB.2.F.例如,0(0,1),但 0 不是(0,1)的外点.3.F.由于0EE.4.F.例如,在1R中,11,1nFnn,3,4nL 是一系列的闭集,但是3(0,1)nnFU不是闭集.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 3 页,共 29 页文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X45.T.因为若E为有界集合,则存在有限区间I,I,使得EI,则*,m Em II于*m E.三,计算证明题.1.证明如下:2.M中任何一个元素可以由球心(,)x y z,半径为r唯一确定,x,y,z跑遍所有的正有理数,r跑遍所有的有理数.因为有理数集于正有理数集为可数集都是可数集,故M为可数集.3.令1iiBBU,则iEBB且B为可测集,于是对于i,都有iBEBE,故*0imBEmBE,令i,得到*0mBE,故BE可测.从而EBBE可测.4.已知0mP,令0,1GP,则13202210130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dxxdxx dxf x dxx dxx dxf x dxx.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 4 页,共 29 页文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X45.将积分区间0,1分为两两不相交的集合:0P,1G,2GL,其中0P为Cantor集,nG是0P的余集中一切长为13n的构成区间(共有12n个)之并.由L积分的可数可加性,并且注意到题中的00mP,可得6.因为323sin1nxnxn x在0,1上连续,13230(R)sin1nxnxdxn x存在且与13230(L)sin1nxnxdxn x的值相等.易知由于12x在0,1上非负可测,且广义积分1012dxx收敛,则12 x在0,1上(L)可积,由于323limsin01nnxnxn x,0,1x,于是根据勒贝格控制收敛定理,得到11332323001323010lim(R)sinlim(L)sin11limsin100nnnnxnxnxdxnxdxn xn xnxnx dxn xdx.一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15 分,每小题3 分)1.非可数的无限集为c 势集2.开集的余集为闭集。3.若 mE=0,则 E为可数集精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 5 页,共 29 页文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X44.若|f(x)|在 E 上可测,则f(x)在 E 上可测5.若 f(x)在 E上有界可测,则f(x)在 E上可积二、将正确答案填在空格内(共8 分,每小题2 分)1._可数集之并是可数集。2.A.任意多个 B.c势个 C.无穷多个 D 至多可数个3._闭集之并交是闭集。4.A.任意多个 B.有限个 C.无穷多个 D 至多可数个5.可数个开集之交是_ 6.A 开集 B 闭集 C F型集 D G 型集7.若|f|在 E上可积,则 _ 8.A.f在 E上可积 B.f 在 E上可测 C.f 在 E上有界 D.f在 E上几乎处处有限三、叙述有界变差函数定义、Fatou 引理、Lebesgue 控制收敛定理(共 9 分,每小题3 分)。四、证明下列集合等式(共6 分,每小题3 分):1.S-S=(S-S)2.Efa=Efa-精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 6 页,共 29 页文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4五、证明:有限个开集之交是开集。举例说明无限个开集之交不一定是开集。(8 分)六、证明:设f(x),f(x)为可积函数列,f(x)f(x)a.e于 E,且|f|d|f|d,则对任意可测子集eE有|f|d|f|d(7 分)七、计算下列各题:(每小题5 分,共 15 分)1.sin(nx)d=2.设 f(x)=求d=3.设 f(x)=n=2,3,求d=一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)1.非可数的无限集为c 势集,(不正确!如:直线上的所有子集全体不可数,但其势大于c)。2.开集的余集为闭集。(正确!教材已证的定理)。3.若 mE=0,则 E为可数集(不正确!如contorP集外测度为0,但是 C势集)。精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 7 页,共 29 页文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X44.若|f(x)|在 E 上可测,则f(x)在 E 上可测(不正确!如)5.若 f(x)在 E上有界可测,则f(x)在 E上可积(不正确!如有界可测,但不可积)二、将正确答案填在空格内1 至多可数个可数集之并是可数集。A.任意多个 B.c 势个 C.无穷多个 D 至多可数个2.有限个闭集之并交是闭集。A.任意多个 B.有限个 C.无穷多个 D 至多可数个3.可数个开集之交是 G 型集A开集 B 闭集 C F型集 D G 型集4.若|f|在 E上可积,则 f在 E上几乎处处有限A.f在 E上可积 B.f 在 E上可测 C.f 在 E上有界 D.f在 E上几乎处处有限三、叙述有界变差函数定义、Fatou 引理、Lebesgue 控制收敛定理(见教材,不赘述!)。精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 8 页,共 29 页文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W10 ZC3L1H3B8X4文档编码:CE6M1J4T1X4 HP8N1X5W8W

    注意事项

    本文(2021年实变函数测试题与答案.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开