欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021年正弦定理和余弦定理.pdf

    • 资源ID:56628626       资源大小:196.67KB        全文页数:8页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021年正弦定理和余弦定理.pdf

    1 第三章三角函数、三角恒等变换及解三角形第7 课时正弦定理和余弦定理1.(必修 5P10习题 1.1 第 1(2)题改编)在ABC中,若A 60,B45,BC 32,则 AC _答案:23 解析:在 ABC中,ACsinBBCsinA,AC BC2 sinBsinA323223223.2.(必修 5P24复习题第1(2)题改编)在ABC中,a3,b 1,c2,则 A _答案:60解析:由余弦定理,得cosAb2c2a22bc1 432313212,0 A,A 60.3.(必修 5P17习题 1.2 第 6 题改编)在ABC中,a、b、c 分别为角A、B、C所对的边,若 a2bcosC,则此三角形一定是_三角形答案:等腰解析:因为a2bcosC,所以由余弦定理得a2b2a2b2c22ab,整理得b2c2,故此三角形一定是等腰三角形4.(必修 5P17习题 6 改编)已知 ABC的三边长分别为a、b、c,且 a2b2c2ab,则C _答案:60解析:cosCa2b2 c22abab2ab12.0 C180,C 60.5.(必修 5P11习题 1.1 第 6(1)题改编)在ABC中,a32,b23,cosC13,则ABC的面积为 _答案:43 解析:cosC13,sinC 223,SABC12absinC 123 323 233223 43.1.正弦定理:asinAbsinBcsinC2R(其中 R为ABC外接圆的半径)2.余弦定理a2 b2 c22bccosA,b2a2c22accosB;c2a2b22abcosC 或 cosAb2c2a22bc,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 1 页,共 8 页2 cosBa2c2b22ac,cosCa2b2c22ab.3.三角形中的常见结论(1)A BC.(2)在三角形中大边对大角,大角对大边:ABabsinAsinB.(3)任意两边之和大于第三边,任意两边之差小于第三边(4)ABC的面积公式 S12a2 h(h 表示 a 边上的高);S12absinC 12acsinB 12bcsinA abc4R;S12r(a bc)(r为内切圆半径);SP(Pa)(Pb)(Pc),其中P12(a bc)备课札记 题型 1 正弦定理解三角形例 1在ABC中,a3,b2,B45.求角 A、C和边 c.解:由正弦定理,得asinAbsinB,即3sinA2sin45,sinA32.ab,A 60或 A120.当 A60时,C180 45 60 75,cbsinCsinB622;当 A120时,C 180 45 120 15,cbsinCsinB622.变式训练在ABC中,(1)若 a4,B 30,C 105,则 b_(2)若 b3,c2,C45,则 a_(3)若 AB 3,BC 6,C30,则 A _精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 2 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A23 答案:(1)22(2)无解(3)45 或 135解析:(1)已知两角和一边只有一解,由B30,C 105,得 A 45.由正弦定理,得basinBsinA4sin30 sin45 22.(2)由正弦定理得sinB bsinCC321,无解(3)由正弦定理BCsinAABsinC,得6sinA312,sinA 22.BCAB,AC,A45或 135.题型 2 余弦定理解三角形例 2在ABC中,a、b、c 分别是角A、B、C的对边,且cosBcosCb2ac.(1)求角 B的大小;(2)若 b13,ac4,求 ABC的面积解:(1)由余弦定理知:cosBa2c2b22ac,cosCa2b2c22ab.将上式代入cosBcosCb2ac,得a2 c2 b22ac22aba2b2c2b2ac,整理得 a2c2b2ac.cosBa2c2b22acac2ac12.B 为三角形的内角,B 23.(2)将 b13,ac4,B 23代入b2a2c22accosB,得b2(a c)22ac2accosB,13 16 2ac 112,ac 3.SABC12acsinB 334.备选变式(教师专享)(20142南京期末)在ABC中,角 A、B、C所对的边分别是a、b、c,已知 c2,C3.(1)若ABC的面积等于3,求 a、b;(2)若 sinC sin(B A)2sin2A,求 ABC的面积解:(1)由余弦定理及已知条件,得a2b2ab4.因为 ABC的面积等于3,所以12absinC 3,得 ab4.联立方程组a2b2ab4,ab4,解得 a2,b2.(2)由题意得sin(B A)sin(B A)4sinAcosA,所以 sinBcosA 2sinAcosA.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 3 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A24 当 cosA0 时,A2,所以 B6,所以 a433,b233.当 cosA0 时,得 sinB 2sinA,由正弦定理得b2a,联立方程组a2b2ab4,b2a,解得 a233,b433.所以 ABC的面积 S12absinC 233.题型 3 三角形形状的判定例 3在ABC中,a、b、c 分别表示三个内角 A、B、C 的对边,如果(a2b2)sin(AB)(a2b2)sin(A B),判断三角形的形状解:已知等式可化为a2sin(AB)sin(A B)b2 sin(A B)sin(A B),2a2cosAsinB 2b2cosBsinA.由正弦定理得sin2AcosAsinB sin2BcosBsinA,sinAsinB(sinAcosAsinBcosB)0,sin2A sin2B.由 02A2,02B2 得2A 2B或 2A2B,即 ABC为等腰或直角三角形备选变式(教师专享)已知 ABC中,b2 cosCc2 cosB1cos2C1cos2B,试判断 ABC 的形状解:由已知,得1cos2C1cos2B2cos2C2cos2Bcos2Ccos2Bb2 cosCc2 cosB,cosCcosBbc.由正弦定理知bcsinBsinC,sinBsinCcosCcosB.sinCcosC sinBcosB,即sin2C sin2B,因为 B、C均为 ABC的内角所以2C2B或 2C2B 180,所以 BC或BC 90,故三角形为等腰或直角三角形题型 4 正弦定理、余弦定理的综合应用例 4在ABC中,A、B、C所对的边分别是a、b、c,且 bcosB 是 acosC、ccosA 的等差中项(1)求 B的大小;(2)若 ac10,b2,求 ABC的面积解:(1)由题意,得acosC ccosA 2bcosB.由正弦定理,得sinAcosC cosAsinC 2sinBcosB,即 sin(A C)2sinBcosB.A C B,0B,sin(AC)sinB 0.cosB 12,B 3.(2)由 B3,得a2 c2 b22ac12,即(ac)22ac b22ac12,ac 2.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 4 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A25 SABC12acsinB 32.变式训练已知 a、b、c 分别为 ABC三个内角A、B、C的对边,acosC3asinC bc0.(1)求 A;(2)若 a2,ABC的面积为3,求 b、c.解:(1)由 acosC3asinC bc0 及正弦定理得sinAcosC 3sinAsinC sinBsinC 0.因为 BAC,所以3sinAsinC cosAsinC sinC 0.由于 sinC 0,所以 sinA612.又 0A0),则b 3t,c 7t,在 ABC 中,由余弦定理得cosCa2 b2c22ab25t29t249t223 5t 3 3t12,所以 C23.2.(20132贵州)ABC的内角 A、B、C 的对边分别为a、b、c,已知 b2,B6,C4,则 ABC的面积为 _答案:31 解析:b 2,B6,C4,由正弦定理得bsin6csin4,解得 c22.又 A(BC)712,SABC12bcsinA 123 23 22362431.3.(20132 盐城期末)在ABC中,若 9cos2A4cos2B5,则BCAC_精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 5 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A26 答案:23解析:由 9cos2A4cos2B5,得 9(1 2sin2A)54(1 2sin2B),得 9sin2A4sin2B,即 3sinA 2sinB.由正弦定理得BCACsinAsinB23.4.已知 ABC中,B45,AC 4,则 ABC面积的最大值为_答案:442 解析:AC2 AB2BC22AB2BC2 cos45,即 16c2a22ac2 cos45,则有 2ac2ac2 cos45 16,即 ac81cos4516(22)28(2 2)Smax12acsin45 243 8(2 2)442.1.(20142南通一模)在ABC中,a、b、c 分别为角A、B、C所对的边,且 c 3bcosA,tanC34.(1)求 tanB 的值;(2)若 c2,求 ABC的面积解:(1)由正弦定理,得sinC 3sinBcosA,即sin(A B)3sinBcosA.所以sinAcosB cosAsinB 3sinBcosA.从而 sinAcosB 4sinBcosA.因为 cosAcosB0,所以tanAtanB 4.又 tanC tan(A B)tanA tanBtanAtanB 1,由(1)知,3tanB4tan2B134,解得 tanB12.(2)由(1),得 sinA 25,sinB 15,sinC 35.由正弦定理,得acsinAsinC232535453.所以 ABC的面积为12acsinB 1234533 231543.2.(20142苏州期末)在ABC中,设角 A、B、C的对边分别为a、b、c,且 acosC12cb.(1)求角 A的大小;(2)若 a15,b4,求边 c 的大小解:(1)用正弦定理,由acosC12cb,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 6 页,共 8 页文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A2文档编码:CK4I3A1S4D9 HT6B10U1M5C2 ZY7L1M10R6A27 得 sinAcosC 12sinC sinB.sinB sin(A C)sinAcosC cosAsinC,12sinC cosAsinC.sinC 0,cosA 12.0A,A3.(2)用余弦定理,得a2b2c22bccosA.a 15,b4,15 16c22343c312.即 c24c10.则 c23.3.在ABC中,A、B、C 所对的边长分别是a、b、c.(1)若 c2,C 3,且 ABC的面积为3,求 a、b 的值;(2)若 sinC sin(B A)sin2A,试判断 ABC 的形状解:(1)c 2,C3,由余弦定理c2a2b22abcosC,得 a2b2ab4.又ABC的面积为3,12absinC 3,即 ab4.联立方程组a2b2ab 4,ab 4,解得 a2,b2.(2)由 sinC sin(B A)sin2A,得 sin(A B)sin(B A)2sinAcosA,即 2sinBcosA2sinAcosA,cosA 2(sinA sinB)0,cosA 0 或 sinA sinB 0.当 cosA0 时,0 A,A2,ABC为直角三角形;当sinA sinB 0 时,得 sinB sinA,由正弦定理得ab,即 ABC为等腰三角形 ABC 为等腰三角形或直角三角形4.在ABC 中,A、B、C所对的边分别为a、b、c,若 a1,b2,cosC14.求:(1)ABC的周长;(2)cos(AC)的值解:(1)因为 c2a2b22abcosC1443144.所以 c2.所以 ABC的周长为 abc 1

    注意事项

    本文(2021年正弦定理和余弦定理.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开