欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年02第二节多元函数的基本概念 .pdf

    • 资源ID:56643738       资源大小:90.01KB        全文页数:5页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年02第二节多元函数的基本概念 .pdf

    第二节 多元函数的基本概念分布图示 领域 平面区域的概念 二元函数的概念 例1 例2 例3 二元函数的图形 二元函数的极限 例4 例5 例6 例7 例8 例 9 例10 二元函数的连续性 例11 二元初等函数 例12-13 闭区域上连续函数的性质 内容小结 课堂练习 习题 6-2 内容提要一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域二、二元函数的概念定义 1 设 D 是平面上的一个非空点集,如果对于D内的任一点),(yx,按照某种法则 f,都有唯一确定的实数z与之对应,则称f 是D上的二元函数,它在),(yx处的函数值记为),(yxf,即),(yxfz,其中 x,y 称为 自变量,z称为 因变量.点集 D 称为该函数的定义域,数集),(),(|Dyxyxfzz称为该函数的值域.类似地,可定义三元及三元以上函数.当2n时,n 元函数统称为 多元函数.二元函数的几何意义三、二元函数的极限定义 2 设函数),(yxfz在点),(000yxP的某一去心邻域内有定义,如果当点),(yxP无限趋于点),(000yxP时,函数),(yxf无限趋于一个常数A,则称A 为函数),(yxfz当),(yx),(00yx时的极限.记为Ayxfyyxx),(lim00.或Ayxf),((),(),(00yxyx)也记作APfPP)(lim0或APf)()(0PP二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述.为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性定义 3 设二元函数),(yxfz在点),(00yx的某一邻域内有定义,如果),(),(lim0000yxfyxfyyxx,则称),(yxfz在点),(00yx处连续.如果函数),(yxfz在点),(00yx处不连续,则称函数),(yxfz在),(00yx处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数.由x和y的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二 元初等函数.一切二元初等函数在其定义区域内是连续的.这里定义区域是指包含在定义域内的区域或闭区域.利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理.下面我们不加证明地列出这些定理.定理 1(最大值和最小值定理)在有界闭区域D 上的二元连续函数,在 D 上至少取得它的最大值和最小值各一次.定理 2(有界性定理)在有界闭区域D 上的二元连续函数在D 上一定有界.定理 3(介值定理)在有界闭区域D 上的二元连续函数,若在 D 上取得两个不同的函数值,则它在 D 上取得介于这两值之间的任何值至少一次.例题选讲多元函数的概念例 1(E01)某公司的总体成本(以千元计)为)1ln(245),(2wzyxwzyxC,其中x是员工工资,y是原料的开销,z是广告宣传的开销,w是机器的开销,求)10,0,3,2(C。解用2替 换x,3替 换y,0替 换z,10替换w,则)110ln(03425)100,3,2(2,C6.29(千元)。例 2(E02)求二元函数222)3arcsin(),(yxyxyxf的定义域.解013222yxyx22242yxyx所求定义域为.,42|),(222yxyxyxD文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4例 3(E03)已知函数,),(2222yxyxyxyxf求),(yxf.解设,yxu,yxv则,2vux,2vuy故得),(vuf22222222vuvuvuvu,222vuuv即有.2),(22yxxyyxf二元函数的极限例 4(E04)求极限2222001sin)(limyxyxyx.解令,22yxu则uuyxyxuyx1sinlim1sin)(lim0222200=0.例 5 求极限.)sin(lim22200yxyxyx解22200)s i n(l i myxyxyx,)s i n(l i m2222200yxyxyxyxyx其中yxyxyx2200)sin(limyxu2uuusinlim0,1222yxyxxyxxy22221x21,00 x所以.0)sin(lim22200yxyxyx例 6(E05)求极限22limyxyxyx.解当0 xy时,22220yxyxyxyxxyyx2),(02121yxxy文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4所以.0lim22yxyxyx例 76 求极限.2lim424300yxxxyyx解422242220yxxxyxyxy242422)(21xyxyyx02212xy(当)0,0 yx所以.02lim424300yxxxyyx例 8 求.)(lim2200 xyyxyx解.)(lim)ln(lim22002200yxxyxyyxyxeyx因为)ln()(0)ln(22222222yxyxyxxyyxxy.)ln()(2222yxyx而22)l n()(l i m222200yxtyxyxyx令,0lnlim0ttt所以,0)l n(l i m2200yxxyyx故.1)(lim02200eyxxyyx例 9(E06)证明2200limyxxyyx不存在.证取kkxy(为常数),则,1limlim222202200kkxkxkxxyxxykxyxyx易见题设极限的值随k 的变化而变化,故题设极限不存在.例 10 证明26300limyxyxyx不存在.文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4证取,3kxy626330263003limlimxkxkxxyxyxkxyxyx,12kk其值随 k 的不同而变化,故极限不存在.二元函数的连续性例 11(E07)讨论二元函数)0,0(),(,0)0,0(),(,),(2233yxyxyxyxyxf在)0,0(处的连续性.解由),(yxf表达式的特征,利用极坐标变换:令,sin,cosyx则)cos(sinlim),(lim330)0,0(),(yxfyx),0,0(0f所以函数在)0,0(点处连续.例 12 求.1)ln(lim210 xyxyyx解210011)01l n(1)l n(l i mxyxyyx.1例 13 求.lim10yxyexyx解因初等函数yxyeyxfx),(在)1,0(处连续,故.2101lim010eyxyexyx课堂练习1.设,22yxxyyxf求).,(yxf2.若点),(yx沿着无数多条平面曲线趋向于点),(00yx时,函数),(yxf都趋向于A,能否断定?),(lim),(),(00Ayxfyxyx3.讨论函数0,00,),(2222422yxyxyxxyyxf的连续性.文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4文档编码:CK8H5I5E8N10 HL4G4J1K1O10 ZL6W5F9Z3J4

    注意事项

    本文(2022年02第二节多元函数的基本概念 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开