2022年2019届高考数学考前归纳总结复习题2 .pdf
圆锥曲线中的最值问题一、常见基本题型:(1)利用基本不等式求最值,例 1、已知椭圆两焦点1F、2F在y轴上,短轴长为2 2,离心率为22,P是椭圆在第一象限弧上一点,且121PFPF,过 P作关于直线F1P 对称的两条直线PA、PB分别交椭圆于 A、B两点,求PAB面积的最大值。解、设椭圆方程为22221yxab,由题意可得2,2,2 2abc,故椭圆方程为22142yx设AB的 直 线 方 程:mxy2.由142222yxmxy,得0422422mmxx,由0)4(16)22(22mm,得2222mP到AB的距离为3|md,则3|3)214(21|212mmdABSPAB2)28(81)8(8122222mmmm。当且仅当22,222m取等号,三角形PAB面积的最大值为2。(2)利用函数求最值,例 2.如图,椭圆222:12xyCa的焦点在 x 轴上,左右顶点分别为1,A A,上顶点为 B,抛物线12,C C分别以 A,B 为焦点,其顶点均为坐标原点O,1C与2C相交于直线2yx上一点 P.(1)求椭圆 C及抛物线12,C C的方程;(2)若动直线l与直线 OP垂直,且与椭圆 C交于不同的两点 M,N,已知点(2,0)Q,求QM QN的最小值.解:(1)由题意(,0),(0,2)A aB,故抛物线 C1 的方程可设为axy42,C2的方程为yx242由xyyxaxy224422得)28,8(,4 Pa所以椭圆C:121622yx,抛物线C1:,162xy抛物线C2:yx242(2)由(1)知,直线 OP的斜率为2,所以直线l的斜率为22设直线l方程为bxy22由bxyyx22121622,整理得0)168(28522bbxx因为动直线l与椭圆C 交于不同两点,所以0)168(2012822bb文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3解得1010b设 M(11,yx)、N(22,yx),则2121282816,55bxxb x x58)(2221)22)(22(2221212121bbxxbxxbxbxyy因为),2(),2(2211yxQNyxQM所以2)(2),2)(,2(2121212211yyxxxxyxyxQNQM5141692bb因为1010b,所以当98b时,QNQM取得最小值其最小值等于938514)98(516)98(592例3、已知抛物线)0(2:2ppyxC的焦点为F,抛物线上一点A的横坐标为1x)0(1x,过点A作抛物线C的切线1l交x轴于点D,交y轴于点Q,交直线:2ply于点M,当2|FD时,60AFD(1)求证:AFQ为等腰三角形,并求抛物线C的方程;(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线2l交直线1l于点P,交直线l于点N,求PMN面积的最小值,并求取到最小值时的1x值解:(1)设),(11yxA,则切线AD的方程为pxxpxy2211,文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3所以),0(),0,2(11yQxD,12|ypFQ,所以|FAFQ,所以AFQ为等腰三角形且D为AQ中点,所以AQDF,60,2|AFDDF,12,60pQFD,得2p,抛物线方程为yx42(2)设)0(),(222xyxB,则B处的切线方程为22222xxxy由)4,2(42422121222211xxxxPxxxyxxxy,)1,22(14211211xxMyxxxy同理)1,22(22xxN,所以面积212211221221116)4)()41)(2222(21xxxxxxxxxxxxS设AB的方程为bkxy,则0b由044422bkxxyxbkxy,得代入得:bbkbbbbkS2222)1(64)44(1616,使面积最小,则0k,得到bbbS2)1(令tb,由得ttttttS12)1()(322,文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3222)1)(13()(ttttS,所以当)33,0(t时)(tS单调递减;当),33(t)(tS单调递增,所以当33t时,S取到最小值为9316,此时312tb,0k,所以311y,即3321x。二、针对性练习 1、已知椭圆22:14xGy.过点(,0)m作圆221xy的切线l交椭圆 G于 A,B 两点.将|AB|表示为 m的函数,并求|AB|的最大值.解:由题意知,|1m.当1m时,切线l的方程为1x,点 A,B 的坐标分别为33(1,),(1,)22,此时|3AB;当1m时,同理可得|3AB;当1m时,设切线l的方程为()yk xm.由22()14yk xmxy得22222(1 4)8440kxk mxk m.设 A,B 两点的坐标分别为1122(,),(,)x yxy.文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3又由l与圆221xy相切,得2|11kmk,即2221mkk.所以222221212112|()()(1)()4ABxxyykxxx x42222222644(44)(1)(1 4)14k mk mkkk24 3|3mm.由于当1m时,|3AB,24 3|4 3|233|mABmmm,当且当3m时,|2AB.所以|AB|的最大值为 2.2.如图,DPx轴,点 M在 DP的延长线上,且|2|DMDP当点 P 在圆221xy上运动时。(I)求点 M的轨迹 C的方程;()过点22(0,)1Tty作圆x的切线l交曲线C于 A,B两点,求AOB 面积 S的最大值和相应的点 T的坐标。解:设点M的坐标为yx,,点P的坐标为00,yx,则0 xx,02yy,所以xx0,20yy,因为00,yxP在圆122yx上,所以12020yx将代入,得点M的轨迹方程 C的方程为1422yx()由题意知,1|t当1t时,切线l的方程为1y,点A、B 的坐标分别为文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3),1,23(),1,23(此时3|AB,当1t时,同理可得3|AB;当1t时,设切线l的方程为,mkxyRk由,14,22yxtkxy得042)4(222tktxxk设 A、B两点的坐标分别为),(),(2211yxyx,则由得:222122144,42ktxxkktxx又由l与圆122yx相切,得,11|2kt即.122kt所以212212)()(|yyxxAB4)4(4)4(4)1(222222ktktkk.3|342tt因为,2|3|343|34|2ttttAB且当3t时,|AB|=2,所以|AB|的最大值为 2 依题意,圆心O到直线 AB的距离为圆122yx的半径,所以AOB面积1121ABS,当且仅当3t时,AOB面积 S的最大值为 1,相应的T的坐标为3,0或者3,03.已知焦点在y轴上的椭圆 C1:2222bxay=1 经过 A(1,0)点,且离心率为23 (I)求椭圆 C1的方程;文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3 ()过抛物线 C2:hxy2(h R)上 P点的切线与椭圆 C1交于两点M、N,记线段 MN与 PA的中点分别为 G、H,当 GH与y轴平行时,求 h 的最小值解:()由题意可得222211,3,2.bcaabc,解得2,1ab,所以椭圆1C的方程为2214yx.()设2,P t th,由2yx,抛物线2C在点P处的切线的斜率为2x tkyt,所以MN的方程为22ytxth代入椭圆方程得2224240 xtxth,化简得222224 1440txt th xth又MN与椭圆1C有两个交点,故422162240thth设1122,Mx yN xy,MN中点横坐标为0 x,则2120222 1t thxxxt,设线段PA的中点横坐标为312tx,由已知得03xx即22122 1t thtt,显然0t,11htt文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y7K10 ZC7B9L1A4V3文档编码:CR4A8X3S9I1 HR4N1I9Y