欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    3.1.5空间向量运算的坐标表示.pdf

    • 资源ID:56650350       资源大小:236.18KB        全文页数:9页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    3.1.5空间向量运算的坐标表示.pdf

    31.5空间向量运算的坐标表示一块巨石从山顶坠落,挡住了前面的路,抢修队员紧急赶到从三个方向拉巨石这三个力为 F1,F2,F3,它们两两垂直,且|F1|3 000 N,|F2|2 000 N,|F3|2 0003 N.问题 1:若以 F1,F2,F3的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,巨石受合力的坐标是什么?提示:F(3 000,2 000,2 0003)问题 2:巨石受到的合力有多大?提示:|F|5 000 N.1空间向量的加减和数乘的坐标表示设 a(a1,a2,a3),b(b1,b2,b3)(1)a b(a1b1,a2b2,a3b3);(2)a b(a1b1,a2b2,a3b3);(3)a(a1,a2,a3)(R);(4)若 b0,则 ab?ab(R)?a1b1,a2 b2,a3b3.2空间向量数量积的坐标表示及夹角公式若 a(a1,a2,a3),b(b1,b2,b3),则(1)a b a1b1 a2b2 a3b3;(2)|a|a aa21 a22a23;(3)cos a,ba b|a|b|a1b1a2b2a3b3a21a22a23b21b22b23;(4)a b?a1b1a2b2 a3b3 0.3空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A(a1,b1,c1),B(a2,b2,c2)(1)AB(a2a1,b2 b1,c2c1);(2)dAB|AB|a2a12 b2b12 c2c12.1空间向量与平面向量的坐标运算的联系类比平面向量的坐标运算,空间向量的坐标运算是平面向量坐标运算的推广,两者实质是一样的,只是表达形式不同而已,空间向量多了个竖坐标2长度公式、两点间距离公式、夹角公式都与坐标原点的选取无关空间向量的坐标运算例 1已知空间四点A,B,C,D 的坐标分别是(1,2,1),(1,3,4),(0,1,4),(2,1,2),设 pAB,qCD.求:(1)p2q;(2)3pq;(3)(pq)(pq);(4)cos p,q 思路点拨 先由点的坐标计算得到向量p,q 的坐标,然后进行各种运算精解详析 因为 A(1,2,1),B(1,3,4),C(0,1,4),D(2,1,2),所以 pAB(2,1,3),qCD(2,0,6)(1)p 2q(2,1,3)2(2,0,6)(2,1,3)(4,0,12)(6,1,9);(2)3pq3(2,1,3)(2,0,6)(6,3,9)(2,0,6)(4,3,15);(3)(pq)(pq)p2 q2|p|2|q|2(221232)(2202 62)26;(4)cos p,qp q|p|q|2,1,3 2,0,62212 32 2202 6214142103510.一点通(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标(2)空间向量进行坐标运算的规律是首先进行数乘运算,再进行加法或减法运算,最后进行数量积运算;先算括号里,后算括号外(3)空间向量的坐标运算与平面向量的坐标运算法则基本一样,应注意一些计算公式的应用1已知 a(1,2,4),b(1,0,3),c(0,0,2)求:(1)a(bc);(2)4ab2c.解:(1)bc(1,0,5),a(bc)11(2)04521;文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9(2)4ab2c(4,8,16)(1,0,3)(0,0,4)(3,8,17)2已知 O 为坐标原点,A,B,C 三点的坐标分别是(2,1,2),(4,5,1),(2,2,3)求点 P 的坐标,使:(1)OP12(ABAC);(2)AP12(ABAC)解:AB(2,6,3),AC(4,3,1)(1)OP12(6,3,4)(3,32,2),则点 P 的坐标为(3,32,2)(2)设 P 为(x,y,z),则AP(x2,y1,z2)12(ABAC)AP(3,32,2),x5,y12,z0,则点 P 坐标为(5,12,0).坐标形式下平行与垂直的应用例 2设 a(1,5,1),b(2,3,5)(1)若(kab)(a3b),求 k;(2)若(kab)(a3b),求 k.思路点拨 先求kab,a 3b 的坐标,再根据向量平行与垂直的充要条件列方程求解;也可由两向量平行或垂直的充要条件进行整体运算,再代入坐标求解精解详析 法一:kab(k 2,5k3,k5)a3b(132,533,135)(7,4,16)(1)因为(kab)(a3b),所以k275k 34k516,解得 k13.(2)因为(kab)(a3b),所以(k2)7(5k3)(4)(k5)(16)0,解得k1063.法二:(1)因为(kab)(a3b),所以(ka b)(a3b),即 ka ba3b.因为 a 与 b 不共线,所以有k ,1 3,解得 k13.(2)因为(kab)(a3b),所以(ka b)(a3b)0,即 k|a|2(3k1)a b3|b|20.文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9而|a|227,|b|238,a b8,所以 27k8(3k1)1140,解得 k1063.一点通(1)要熟练掌握两个向量平行和垂直的充要条件,借助空间向量可将立体几何中的平行、垂直问题转化为向量的坐标运算(2)在应用坐标形式下的平行条件时,一定要注意结论成立的前提条件在条件不明确时,要分类讨论3已知 a(1,0,2),b(6,2 1,2),ab,则 与 的值分别为()A.15,12B5,2 C25,12D 5,2 解析:ab,a kb,即 16k,0 k(2 1),2 2k.解得 15,k15,12.答案:A 4已知空间三点A(2,0,2),B(1,1,2),C(3,0,4),设 aAB,bAC.若向量kab 与 ka2b 互相垂直,求k 的值解:a(12,10,22)(1,1,0),b(32,00,42)(1,0,2),kab(k,k,0)(1,0,2)(k1,k,2),ka2b(k,k,0)(2,0,4)(k2,k,4)(kab)(ka2b),(k1,k,2)(k 2,k,4)(k1)(k2)k280,即 2k2 k10 0,k52或 k2.利用坐标运算解决夹角、距离问题例3如图,在直三棱柱(侧棱垂直于底面的棱柱)ABC A1B1C1中,CACB1,BCA90,棱 AA12,N 为 A1A 的中文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9点(1)求 BN 的长;(2)求 A1B 与 B1C 所成角的余弦值思路点拨 先建立空间直角坐标系,写出各向量的坐标,再利用向量方法进行求解精解详析 如图,以CA,CB,1CC为单位正交基底建立空间直角坐标系Cxyz.(1)依题意得B(0,1,0),N(1,0,1),|BN|1 02 012 1023,线段 BN 的长为3.(2)依题意得A1(1,0,2),C(0,0,0),B1(0,1,2),1BA(1,1,2),1CB(0,1,2),1BA1CB1 0(1)1223.又|1BA|6,|1CB|5,cos1BA,1CB1BA1CB|1BA|1CB|3010.故 A1B 与 B1C 所成角的余弦值为3010.一点通 在特殊的几何体中建立空间直角坐标系时要充分利用几何体本身的特点,以使各点的坐标易求利用向量解决几何问题,可使复杂的线面关系的论证、角及距离的计算变得简单5若 A(3cos ,3sin ,1),B(2cos ,2sin ,1),则|AB|的取值范围是()A0,5 B1,5 C(1,5)D1,25 解析:AB(2cos 3cos ,2sin 3sin ,0),|AB|2(2cos 3cos )2(2sin 3sin )24912(cos cos sin sin )1312cos()1 cos()1,1|AB|225.1|AB|5.文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9答案:B 6已知 a(5,3,1),b(2,t,25),若 a 与 b 的夹角为钝角,求实数t 的取值范围解:由已知 a b5(2)3t 1(25)3t525.a 与 b 的夹角为钝角,a b0,即 3t5250,t5215.若 a 与 b 的夹角为180,则存在 0,使 ab(0),即(5,3,1)(2,t,25),5 2,3t,1 25,t65,故 t 的范围是(,65)(65,5215)1在解决已知向量夹角为锐角或钝角求参数的范围时,一定要注意两向量共线的情况2运用向量坐标运算解决几何问题的方法:3若AB,CD ,两条异面直线AB,CD 所成角为,则 cos|cos|.文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H91已知 a(1,1,0),b(0,1,1),c(1,0,1),pab,qa2bc,则 pq()A 1B1 C0 D 2 解析:pab(1,0,1),qa2bc(0,3,1),p q10031(1)1.答案:A 2已知点A(1,2,11),B(4,2,3),C(6,1,4),则 ABC 的形状是()A等腰三角形B等边三角形C直角三角形D等腰直角三角形解析:AB(3,4,8),AC(5,1,7),BC(2,3,1),|AB|32 428289,|AC|52 12 7275,|BC|2232 114,|AC|2|BC|275 1489|AB|2.ABC 为直角三角形答案:C 3已知 a(2,0,3),b(4,2,1),c(2,x,2),若(ab)c,则 x 等于()A4 B 4 C2 D 2 解析:ab(2,2,2),又(ab)c,(ab)c 0,即 42x40,x 4.答案:B 4已知 A(1,0,0),B(0,1,1),O(0,0,0),OAOB与OB的夹角为120,则 的值为()A66B.66C66D 6 解析:OA(1,0,0),OB(0,1,1),OAOB(1,),文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编码:CN1J9C10S8G3 HF8L6O6G10V3 ZZ9I4M8Z10H9文档编

    注意事项

    本文(3.1.5空间向量运算的坐标表示.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开