欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    多边形及其内角和A.pdf

    • 资源ID:56655716       资源大小:44.22KB        全文页数:4页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多边形及其内角和A.pdf

    1/4 7.3 多边形及其内角和1下面哪一个度数是某个多边形的内角和()A270 B 630 C1920 D720知识点:多边形的内角和知识点的描述:n 边形的内角和是(n-2)180,多边形的内角和一定是180的整数倍答案:D 详细解答:270、630、1920、720中只有D720是 180的整数倍,所以选D.2.一个多边形的外角中,钝角的个数不可能是()A.1个 B.2个 C.3个 D.4个知识点:多边形的外角和知识点的描述:多边形的外角和360,是一个不变的常数,与边数无关,也就是说不管是几边形,他的外角和总是360答案:D 详细解答:多边形的外角和360,因此一个多边形的外角中,钝角的个数不可能超过3个,如果是4 个钝角,那么外角和大于360,这是不可能的。所以选D。3 若一个正多边形的每一个内角都等于120,则它是()A正方形 B 正五边形 C 正六边形 D正八边形知识点:正多边形的内角知识点的描述:正多边形的每个内角都相等,正多边形的内角和也是(n-2)180.答案:C 详细解答:若一个正多边形的每一个内角都等于120,那么他的每一个外角都等于60,由于多边形的外角和360,所以边数就是360 60=6.另一种解法:假设正n 边形,(n-2)180=n120,解得n=6。4三角形一个外角小于与它相邻的内角,这个三角形是()A直角三角形 B锐角三角形 C钝角三角形 D属于哪一类不能确定知识点:三角形的外角和与他相邻的内角的关系.知识点的描述:三角形的外角和与他相邻的内角互补.答案:C 详细解答:三角形的外角和与他相邻的内角互补,又三角形一个外角小于与它相邻的内角,那2/4 么外角是锐角而内角是钝角,所以这个三角形是钝角三角形.5一个多边形的内角和是三角形外角和的3 倍,则这个多边形为()A五边形 B 六边形 C八边形 D九边形知识点:多边形的内角和与多边形的外角和.知识点的描述:多边形的内角和为(n-2)180,多边形的外角和为360.答案:C 详细解答:多边形的内角和是三角形外角和的3 倍,则(n-2)180=3360,解得 n=8.6.若从一个多边形的一个顶点出发,最多可以引10 条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形知识点:多边形的对角线总数知识点的描述:n 边形的每一个顶点都有(n-3)个和他不相邻的顶点,从 n 边形的每一个顶点可以引出(n-3)条对角线,所以 n边形共有32n n条对角线答案:A 详细解答:因为从 n 边形的每一个顶点可以引出(n-3)条对角线,所以 n-3=10,得 n=13.7若三角形三个外角的比为4:2:3,则这个三角形是()A、锐角三角形B、直角三角形C、等腰三角形D、钝角三角形知识点:三角形的内角和、三角形的外角和知识点的描述:三角形的内角和180,三角形外角和360答案:D 三角形三个外角的比为4:2:3,所以假设三角形的三个外角分别为4k、2k、3k,又因为三角形的外角和360,所以4k+2k+3k=360,解得k=40,所以最小外角是80,那么最大内角100,因此这个三角形是钝角三角形.8.一个多边形除一个内角外,其余各个内角的和为20300,则这个多边形的边数()A.12 B.13 C.14 D.15 .知识点:多边形的内角和知识点的描述:n 边形的内角和是(n-2)180,多边形的内角和一定是180的整数倍答案:C 详细解答:设边数为n,这个内角为x,则 00 x1800文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z83/4 根据题意,得(n-2)1800=x+20300(n-2)1800是 1800的倍数x+20300必是 1800的倍数203001800=1150 x=1800-500=1300(n-2)1800=180011+1800 n-2=12 n=14 这个多边形的边数为14.点拨:本题在利用多边形的内角和计算公式得到方程后,又借助数的整除,通过讨论得这个内角的度数,这是解决有关多边形的内角和与外角和问题的一种常用的方法.9.一个五边形的五个外角的度数比是12345,这个五边形的五个内角的度数比().A.123 45B.5 432 1 C.131197 5D.11 9753 知识点:多边形的外角和相邻的内角的关系,多边形的外角和。知识点的描述:多边形的外角和相邻的内角互补;多边形的外角和360。答案:C 详细解答:五边形的五个外角的度数比是12345,假设这五个外角的度数分别是k、2k、3k、4k、5k,因为外角和为360,所以k+2k+3k+4k+5k=360,求得k=24.五个外角的度数分别是24、48、72、96、120,那么与它们相邻的五个内角的度数分别是156、132、108、84、60,所以五个内角的度数比为156132 108 84 60=1311975 10.已知 ABC的边 BA、BC分别与 DEF的边 ED、EF垂直,垂足分别是M、N,且 ABC=700,则 DEF的度数().A.700 B.1100 C.700或 1100 D.1400知识点:多边形内角和定理的综合应用知识点的描述:只要善于从复杂的图形中找到基本图形,利用三角形或多边形的内角和定理就可以解决问题答案:C 点拨:本题已知了ABC和 DEF的边的关系,没有给出图形,可先画出图形,再结合图形,利用相关知识求解.根据题意,符合条件的图形可画出两个,要考虑周全,不能漏解,两个图形:分别如图(1),图(2)在图(1)中,求 DEF,利用四边形内角和定理即可文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z84/4 在图(2)中,求 DEF,利用三角形内角和等于1800,以及利用两个三角形中角的关系进行求解.详细解答:(1)如图(1)DE AB BME=900EFBC BNE=900 B+BME+BNE+DEF=3600 又 B=700 DEF=1100(2)如图(2)DE AB BME=900EFBC BNE=900 BME=BNE DEF+BME+EOM=1800又 B+BNE+BON=1800 DEF+BME+EOM=B+BNE+BON DEF+EOM=B+BON EOM=BON DEF=B B=700 DEF=700 DEF=700或 1100A B F C E D M N(1)(2)A E O B C D M N F 文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8文档编码:CM6N7L4K10X9 HK8T3R10I8W3 ZJ6T9X4P3Z8

    注意事项

    本文(多边形及其内角和A.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开