欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    多元函数微分法及其应用答案.pdf

    • 资源ID:56666920       资源大小:47KB        全文页数:3页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    多元函数微分法及其应用答案.pdf

    第九章 多元函数微分法及其应用一、填空题1.若22(,)tanxf x yxyxyy,则(,)f tx ty222222tan(,)xt xt yt xyt f x yy.2.若22()(0)xyxfyyy,则()f x21u.3.函数arcsinyzx的定义域为(,)|10yx yxx且.4.1sin00lim(1)xyxyxye.5.若2xyzeyx,则zy2xyxex.6.若23(,)5f x yx y,则(0,1)xf3(0,1)10|0 xy.7.若222ln(1)uxyz,则 du2222()xdxydyzdzxyz.8.设yxze,则 dz21yyxxye dxe dyxx.9.已知sin()xzye,而3yx,则dzdx23(3)cos()xxxexe.10.已知2xyze,而3sin,xt yt,则dzdt3sin22(cos6).ttett11.设)1ln(22yxz,则21yxdz1233dxdy.12.设vuz2,而yxvyxusin,cos,则xz223cossinxyy,yz322cos(cos2sin)xyyy.13.若(,)zf x y在区域D上的两个混合偏导数22,zzx yy x连续,则在D上22zzx yy x.14.函数(,)zf x y在点00(,)xy处可微的必要 条件是(,)zf x y在点00(,)xy处的偏导数存在.(填“充分”、“必要”或“充分必要”)15.函数(,)zf x y在点00(,)xy可微是(,)zf x y在点00(,)xy处连续的充分 条件.(填“充分”、“必要”或“充分必要”)16设23(,)f x y zxy z,其中(,)zz x y是由方程22230 xyzxyz所确定的隐函数,则(1,1,1)xf2.二、选择题1.二元函数222241lnarcsinzxyxy的定义域是(A)(A)22(,)|14x yxy;(B)22(,)|14x yxy;(C)22(,)|14x yxy;(D)22(,)|14x yxy.2.设函数ln()zxy,则zx(C)(A)1y;(B)xy;(C)1x;(D)yx.3.设函数2sin()zxy,则zx(D)(A)2cos()xyxy;(B)2cos()xyxy;(C)22cos()yxy;(D)22cos()yxy.4.设函数3xyz,则zx(D)(A)3xyy;(B)3ln3xy;(C)13xyxy;(D)3ln 3xyy.5.设函数1zxy,则zy(C)(A)21x y;(B)21x y;(C)21xy;(D)21xy.6.设函数sinzxy,则22zx(A)(A)2sinyxy;(B)2sinyxy;(C)2sinxxy;(D)2sinxxy.7.设二元函数xyzxy,则 dz(B)(A)22()()xdxydyxy;(B)22()()xdyydxxy;(C)22()()ydyxdxxy;(D)22()()ydxxdyxy.8.设函数()yf x是由方程0yyxex确定,则dydx(B)文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5(A)1yyexe;(B)11yyexe;(C)11yyexe;(D)1yyexe.9.设函数(,)zf x y是由方程2320 xyxyz确定,则zx(B)(A)222xyzxyz;(B)222xyzxyz;(C)2232yxzxyz;(D)2232yxzxyz.10.若函数(,)f x y在点00(,)xy处不连续,则(C)(A)00lim(,)xxyyf x y 必不存在;(B)00(,)f xy必不存在;(C)(,)f x y在点00(,)xy必不可微;(D)0000(,),(,)xyfxyfxy必不存在.11.考虑二元函数(,)f x y的下面 4 条性质:函数(,)f x y在点00(,)xy处连续;函数(,)f x y在点00(,)xy处两个偏导数连续;函数(,)f x y在点00(,)xy处可微;函数(,)f x y在点00(,)xy处两个偏导数存在.则下面结论正确的是(A)(A);(B);(C);D)。12.设函数2224222,0(,)0,0 x yxyxyf x yxy,则在(0,0)点处(C)(A)连续,偏导数存在;(B)连续,偏导数不存在;(C)不连续,偏导数存在;(D)不连续,偏导数不存在。三、是非题1.设2lnzxy,则12zxxy()2.若函数(,)zf x y在00(,)P xy处的两个偏导数00(,)xfxy与00(,)yfxy均存在,则该函数在P点处一定连续()3.函数(,)zfx y在00(,)P xy处一定有0000(,)(,)xyyxfxyfxy.()4.函数222222,0(,)0,0 xyxyxyf x yxy在点(0,0)处有(0,0)(0,0)0 xyff.()5.函数22zxy在点(0,0)处连续,但在点(0,0)处的两个偏导数(0,0),(0,0)xyzz均不存在。()文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5文档编码:CY1A1R10S8W4 HZ7R5R10K2C2 ZU4I5L10L1B5

    注意事项

    本文(多元函数微分法及其应用答案.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开