欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    大学物理上部分试题及答案..pdf

    • 资源ID:56667921       资源大小:597.60KB        全文页数:26页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    大学物理上部分试题及答案..pdf

    优秀学习资料欢迎下载第一章 质点运动学一、填空题1.一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向改变,法向加速度的大小不变。(填“改变”或“不变”)2.一质点作半径为 0.1 m 的圆周运动,其角位移随时间t的变化规律是=2+4t2 (SI)。在t=2 s 时,它的法向加速度大小an=_25.6_m/s2;切向加速度大小at=_0.8_ m/s2。3.一质点在 OXY平面内运动,其运动方程为22,192xt yt,则质点在任意时刻的速度表达式为j ti42;加速度表达式为ja4。4、沿半径为R的圆周运动,运动学方程为212t (SI),则时刻质点的法向加速度大小为an=(16 R t2);角加速度=(4 rad/s2)(1 分)5.一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为:2214t,则其切向加速度大小为ta=_0.1_2m s,第 1 秒末法向加速度的大小为na=_0.1_2m s.6一小球沿斜面向上作直线运动,其运动方程为:245tts,则小球运动到最高点的时刻是t=_2_s.7、一质点在 OXY 平面内运动,其运动方程为22,192xt yt,则质点在任意时刻的速度表达式为(j ti42);加速度表达式为(ja4)。8.一质点沿半径R=0.4 m 作圆周运动,其角位置=2+3t2,在 t=2s 时,它的法向加速度na=(57.6 )2/sm,切向加速度ta=(2.4 )2/sm。9、已知质点的运动方程为jti tr)2(22,式中 r 的单位为m,t的单位为s。则质点的运动轨迹方程y(2412x),由0t到st2内质点的位移矢量r(ji44)m。10、质点在OXY平面内运动,其运动方程为210,2tytx,质点在任意时刻的位置矢量为(jti t)10(22);质点在任意时刻的速度矢量为(j ti22);加速度矢量为(j2)。-第 1 页,共 26 页精品p d f 资料 可编辑资料-优秀学习资料欢迎下载二、选择题1.某质点作直线运动的运动学方程为x5t-2t3+8,则该质点作(D )。(A)匀加速直线运动,加速度沿x轴正方向(B)匀加速直线运动,加速度沿x轴负方向(C)变加速直线运动,加速度沿x轴正方向(D)变加速直线运动,加速度沿x轴负方向2.一质点在平面上运动,已知质点位置矢量的表示式为jbtiatr22(其中a、b为常量),则该质点作(C )。(A)匀速直线运动;(B)抛物线运动;(C)变速直线运动;(D)一般曲线运动。3、某质点作直线运动的运动学方程为6533ttx(SI),则该质点作(D )。(A)匀加速直线运动,加速度沿x 轴正方向(B)匀加速直线运动,加速度沿x 轴负方向(C)变加速直线运动,加速度沿x 轴正方向(D)变加速直线运动,加速度沿x 轴负方向4、一质点在x 轴上运动,其坐标与时间的变化关系为x=4t-2t2,式中 x、t 分别以 m、s 为单位,则 4 秒末质点的速度和加速度为(B )(A)12m/s、4m/s2;(B)-12 m/s、-4 m/s2;(C)20 m/s、4 m/s2;(D)-20 m/s、-4 m/s2;5在一直线上相向运动的两个小球作完全弹性碰撞,碰撞后两球均静止,则碰撞前两球应满足:-第 2 页,共 26 页精品p d f 资料 可编辑资料-文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4优秀学习资料欢迎下载(D )。(A)质量相等;(B)速率相等;(C)动能相等;(D)动量大小相等,方向相反。6.以下四种运动形式中,加速度保持不变的运动是(A )。A抛体运动;B匀速圆周运动;C变加速直线运动;D 单摆的运动.。7、一质点沿 x 轴运动的规律是mttx3352。则第三秒时的加速度的大小是(A )2/sm。A 10 B50;C15;D12。8、质点做半径为1m的圆周运动,运动方程为=3+2t2(SI单位),则t时刻质点的切向加速度的大小为ta=(C )m/s2。A 1 B3;C4;D8。9、质点沿半径R做圆周运动,运动方程为232tt(SI单位),则任意时刻质点角速度的大小=(B)。A31t B62t;C42t;D62t。10、质点在OXY平面内运动,其运动方程为210,tytx,质点在任意时刻的加速度为(B)。Aj Bj2;C3j;D4j。三、一质点沿半径为R的圆周按规律2021bttvs运动,bv,0都是常量。-第 3 页,共 26 页精品p d f 资料 可编辑资料-文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4优秀学习资料欢迎下载(1)求t时刻质点加速度的大小;(2)t为何值时总加速度在数值上等于b?(3)当加速度达到b时,质点已沿圆周运行了多少圈?(1)由2021bttvs可知btvv0RbtvRvat202bdtdvanRbtvbRaaatn402222(2)bRbtvbRaaatn402222即00btvbvt0(3)bvt0带入2021bttvsbvbttvs2212020bRvn420四、质点 P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度与时间t的关系为2kt,已知t=2s 时,质点 P的速率为 16m/s,试求 t=1s 时,质点 P 的速率与加速度的大小。解:由线速度公式221ktRktR得421622tkP点的速率为24t m/s ttat8dd m/s24222161)4(ttRan m/s2t=1 时:)/(414422smt)/(882smtat)/(1611616244smtan)/(9.175881622222smaaant五、已知质点的运动学方程为:2283126810rttittj.式中r的单位为米,t的单位为秒,求作用于质点的合力的大小。解:163(128)drvtitjdt1612dvaijdt六、一质点沿x方向运动,其加速度随时间的变化关系为a=3+2 t(SI),如果初始时质点的速度v0为 5m/s,则当为 3s 时,质点的速率v为多大。-第 4 页,共 26 页精品p d f 资料 可编辑资料-文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4优秀学习资料欢迎下载解:2()3+2 3 +va t dtt dtttC0t时,05v可得积分常量5Cm/s 速度为23+5vt t当3t时,233+523vt t m/s 七、一质点在OXY平面内运动,其运动方程为22,10 xt yt,求(1)质点运动的轨迹方程;(2)质点在任意时刻的速度和加速度矢量。(1)4102xy(2)j ti22,ja2八、已知一质点的运动方程为22rat ibt j(a、b 为常数,且不为零),求此质点运动速度的矢量表达式、加速度的矢量表达式和轨迹方程。22drvatibtjdt22dvaaibjdt2xat2ybt则将2xta代入y的表达式可得到质点运动的轨迹方程为byxa九、已知质量为3kg的质点的运动学方程为:22321468rttittj.式中r的单位为米,t的单位为秒,求任意时刻的速度矢量和加速度矢量表达式。解:62(86)drvtitjdt68dvaijdt(2)2226810m saa3 1030NFma-第 5 页,共 26 页精品p d f 资料 可编辑资料-文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4优秀学习资料欢迎下载十、一质点在OXY平面内运动,其运动方程为24,82xt yt,求(1)质点运动的轨迹方程;(2)质点在任意时刻的速度和加速度矢量。(1)288xy(2)44itj,4aj十一、已知质量为10kg的质点的运动学方程为:2283126810rttittj.式中r的单位为米,t的单位为秒,求作用于质点的合力的大小。解:163(128)drvtitjdt1612dvaijdt222121620m saa10 20200NFma十二、有一质点沿 x 轴作直线运动,t 时刻的坐标为 x=5t2-3t3(SI).试求(1)在第 2 秒内的平均速度;(2)第 2 秒末的瞬时速度;(3)第 2 秒末的加速度.第四章刚体的转动一、填空题1.刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成_ 正比 _,与刚体本身的转动惯量成反比。(填“正比”或“反比”)2.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J,角速度为0;然后将两手臂合拢,使其转动惯量变为023J,则转动角速度变为032.(1)/6m/sxtv2(2)d d109,x/tttvt 216 m/sv1018,t(3)d/datv2t226 m/sa-第 6 页,共 26 页精品p d f 资料 可编辑资料-文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4优秀学习资料欢迎下载3某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变大;转动惯量变小。4、均匀细棒质量为m,长度为l,则对于通过棒的一端与棒垂直的轴的转动惯量为(32ml),对于通过棒的中点与棒垂直的轴的转动惯量(122ml)。5、长为L的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为(Lg23),细杆转动到竖直位置时角加速度为(零)。6.一长为1ml的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。抬起另一端使棒向上与水平面呈60 ,然后无初转速地将棒释放,已知棒对轴的转动惯量为213ml,则(1)放手时棒的角加速度为(7.5)2/srad;(2)棒转到水平位置时的角加速度为(15)2/srad。(210m/sg)7、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度(减小)。8 一根长为l,质量为m的均匀细棒在地上竖立着。如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为(lg23)。9、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度(变大 )10、如图所示,一静止的均匀细棒,长为L、质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O在水平面内转动,转动惯量为32ML。一质量为m、速率为v的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为2v,则此时棒的角速度应为(MLm2v3)。二、选择题1、长为L的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。O v21v俯视图-第 7 页,共 26 页精品p d f 资料 可编辑资料-文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4文档编码:CX3G9M2J2P10 HG7K9W4C3V7 ZH2M1I7X6H4

    注意事项

    本文(大学物理上部分试题及答案..pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开