2022年2013届高考数学基础知识总结:第六章不等式 .pdf
文档供参考,可复制、编制,期待您的好评与关注!-1-/4 高中数学第六章-不等式考试内容:不等式不等式的基本性质不等式的证明不等式的解法含绝对值的不等式考试要求:(1)理解不等式的性质及其证明(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用(3)掌握分析法、综合法、比较法证明简单的不等式(4)掌握简单不等式的解法(5)理解不等式a-b a+b a+b06.不 等 式知识要点1.不等式的基本概念(1)不等(等)号的定义:.0;0;0babababababa(2)不等式的分类:绝对不等式;条件不等式;矛盾不等式.(3)同向不等式与异向不等式.(4)同解不等式与不等式的同解变形.2.不等式的基本性质(1)abba(对称性)(2)cacbba,(传递性)(3)cbcaba(加法单调性)(4)dbcadcba,(同向不等式相加)(5)dbcadcba,(异向不等式相减)(6)bcaccba0,.(7)bcaccba0,(乘法单调性)(8)bdacdcba0,0(同向不等式相乘)(9)0,0ababcdcd(异向不等式相除)11(10),0ab abab(倒数关系)(11))1,(0nZnbabann且(平方法则)文档供参考,可复制、编制,期待您的好评与关注!-2-/4(12))1,(0nZnbabann且(开方法则)3.几个重要不等式(1)0,0|,2aaRa则若(2))2|2(2,2222ababbaabbaRba或则、若(当仅当a=b 时取等号)(3)如果 a,b 都是正数,那么.2abab(当仅当a=b 时取等号)极值定理:若,x yRxyS xyP 则:1 如果 P是定值,那么当 x=y 时,S的值最小;2 如果 S是定值,那么当 x=y 时,P的值最大.利用极值定理求最值的必要条件:一正、二定、三相等.3,3abcabcRabc(4)若、则(当仅当 a=b=c 时取等号)0,2baabab(5)若则(当仅当 a=b 时取等号)2222(6)0|;|axaxaxaxaxaxaaxa时,或(7)|,bababaRba则、若4.几个著名不等式(1)平均不等式:如果 a,b 都是正数,那么222.1122abababab(当仅当a=b 时取等号)即:平方平均算术平均几何平均调和平均(a、b 为正数):特别地,222()22ababab(当 a=b 时,222()22ababab)),(332222时取等cbaRcbacbacba幂平均不等式:22122221).(1.nnaaanaaa注:例如:22222()()()acbdabcd.常用不等式的放缩法:21111111(2)1(1)(1)1nnnn nnn nnn11111(1)121nnnnnnnnnn(2)柯西不等式:时取等号当且仅当(则若nnnnnnnnbababababbbbaaaababababaRbbbbRaaaa332211223222122322212332211321321)();,文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档供参考,可复制、编制,期待您的好评与关注!-3-/4(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x xxx有12121212()()()()()().2222xxf xf xxxf xf xff或则称 f(x)为凸(或凹)函数.5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例一元一次不等式axb 解的讨论;一元二次不等式ax2+bx+c0(a0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g xf xf xf x g xg xg xg x(3)无理不等式:转化为有理不等式求解1()0()()()0()()f xf xg xg xf xg x定义域20)(0)()()(0)(0)()()(2xgxfxgxfxgxfxgxf或32)()(0)(0)()()(xgxfxgxfxgxf(4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lglgfxg xfxgxfxaaaf xg xaaaf xg xab abf xab(5)对数不等式:转化为代数不等式()0()0log()log()(1)()0;log()log()(01)()0()()()()aaaaf xf xf xg x ag xf xg xag xf xg xf xg x(6)含绝对值不等式 1 应用分类讨论思想去绝对值;2 应用数形思想;3 应用化归思想等价转化文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档供参考,可复制、编制,期待您的好评与关注!-4-/4)()()()(0)()0)(),(0)()(|)(|)()()(0)()(|)(|xgxfxgxfxgxgxfxgxgxfxgxfxgxgxgxf或或不同时为注:常用不等式的解法举例(x 为正数):2311 24(1)2(1)(1)()22 327xxxxx2222232(1)(1)1 242 3(1)()22 3279xxxyxxyy类似于22sincossin(1 sin)yxxxx,111|()2xxxxxx与同号,故取等文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1文档编码:CW8X1I9W6F4 HO2D6S10O2I5 ZA2Y8J6S3Y1