欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年4.3空间直角坐标系1 .pdf

    • 资源ID:56676559       资源大小:150.42KB        全文页数:4页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年4.3空间直角坐标系1 .pdf

    名师精编优秀教案空间直角坐标系空间点的直角坐标系为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。过定点 O,作三条互相垂直的数轴,它们都以O 为原点且一般具有相同的长度单位.这三条轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴);统称 坐标轴.通常把 x 轴和 y 轴配置在水平面上,而 z 轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z 轴,当右手的四指从正向x轴以/2角度转向正向y 轴时,大拇指的指向就是z 轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点 O 叫做 坐标原点。(如下图所示)三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。例:设点 M 为空间一已知点.我们过点M 作三个平面分别垂直于x 轴、y 轴、z 轴,它们与x轴、y 轴、z 轴的交点依次为P、Q、R,这三点在x 轴、y 轴、z 轴的坐标依次为x、y、z.于是空间的一点M 就唯一的确定了一个有序数组x,y,z.这组数 x,y,z 就叫做点M 的坐标,并依次称x,y和 z 为点 M 的横坐标,纵坐标和竖坐标。(如下图所示)坐标为 x,y,z 的点 M 通常记为M(x,y,z).这样,通过空间直角坐标系,我们就建立了空间的点M 和有序数组x,y,z 之间的 一一对应关系。注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.例:如果点 M 在 yOz 平面上,则 x=0;同样,zOx 面上的点,y=0;如果点 M 在 x 轴上,则 y=z=0;如果 M 是原点,则 x=y=z=0,等。空间两点间的距离设 M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d 我们有公式:例题:证明以 A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形 ABC 是一等腰三角形.解答:由两点间距离公式得:名师精编优秀教案由于,所以 ABC 是一等腰三角形方向余弦与方向数解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。方向角与方向余弦设有空间两点,若以 P1为始点,另一点P2为终点的线段称为有向线段.记作.通过原点作一与其平行且同向的有向线段.将与 Ox,Oy,Oz三个坐标轴正向夹角分别记作,.这三个角,称为有向线段的方向角.其中 0,0 ,0.关于方向角的问题若有向线段的方向确定了,则其方向角也是唯一确定的。方向角的余弦称为有向线段或相应的有向线段的方向余弦。设有空间两点,则其方向余弦可表示为:从上面的公式我们可以得到方向余弦之间的一个基本关系式:注意:从原点出发的任一单位的有向线段的方向余弦就是其端点坐标。方向数方向余弦可以用来确定空间有向直线的方向,但是,如果只需要确定一条空间直线的方位(一条直线的两个方向均确定着同一方位),那末就不一定需要知道方向余弦,而只要知道与方向余弦成比例的三个数就可以了。这三个与方向余弦成比例且不全为零的数A,B,C 称为 空间直线的方向数,记作:A,B,C.即:据此我们可得到方向余弦与方向数的转换公式:文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3名师精编优秀教案,其中:根式取正负号分别得到两组方向余弦,它们代表两个相反的方向。关于方向数的问题空间任意两点坐标之差就是联结此两点直线的一组方向数。两直线的夹角设 L1与 L2是空间的任意两条直线,它们可能相交,也可能不相交.通过原点O 作平行与两条直线的线段.则线段的夹角称为此 两直线L1与 L2的夹角.若知道 L1与 L2的方向余弦则有公式为:其中:为两直线的夹角。若知道 L1与 L2的方向数则有公式为:两直线平行、垂直的条件两直线平行的充分必要条件为:两直线垂直的充分必要条件为:曲面与空间曲线曲面的方程我们知道,在平面解析几何中可把曲线看成是动点的轨迹.因此,在空间中曲面可看成是一个动点或一条动曲线(直线)按一定的条件或规律运动而产生的轨迹。设曲面上动点P 的坐标为(x,y,z),由这一条件或规律就能导出一个含有变量x,y,z 的方程:如果此方程当且仅当P 为曲面上的点时,才为P 点的坐标所满足。那末我们就用这个方程表示曲面,并称这个方程为曲面的方程,把这个曲面称为方程的图形。空间曲线的方程我们知道,空间直线可看成两平面的交线,因而它的方程可用此两相交平面的方程的联立方程组来表示,这就是直线方程的一般式。一般地,空间曲线也可以象空间直线那样看成是两个曲面的交线,因而空间曲线的方程就可由此两相交曲面方程的联立方程组来表示。文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3名师精编优秀教案设有两个相交曲面,它们的方程是,那末联立方程组:便是它们的交线方程。两类常见的曲面1、柱面设有动直线L 沿一给定的曲线C 移动,移动时始终与给定的直线M 平行,这样由动直线L 所形成的曲面称为柱面,动直线L 称为 柱面的母线,定曲线C 称为 柱面的准线。2、旋转面设有一条平面曲线C,绕着同一平面内的一条直线L 旋转一周,这样由C 旋转所形成的曲面称为 旋转面,曲线 C 称为 旋转面的母线,直线 L 称为 旋转面的轴。下面我们再列举出几种常见的二次曲面二次曲面的名称二次曲面的方程椭球面单叶双曲面双叶双曲面椭圆抛物面双曲抛物面文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3文档编码:CH10T3X6A10H3 HH6K9N1K1J9 ZA3E9N2D6T3

    注意事项

    本文(2022年4.3空间直角坐标系1 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开