欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1).pdf

    • 资源ID:56687699       资源大小:149.04KB        全文页数:7页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1).pdf

    精品资料欢迎下载习题六1.求映射1wz下,下列曲线的像.(1)22xyax (0a,为实数)解:222211i=+iixywuvzxyxyxy221xxuxyaxa,所以1wz将22xyax 映成直线1ua.(2).ykx(k为实数)解:22221ixywzxyxy222222xykxuvxyxyxyvku故1wz将 ykx 映成直线 vku.2.下列区域在指定的映射下映成什么?(1)Im()0,(1i)zwz;解:(1i)(i)()i(+)wxyxyx y,.20.uxy vxyuvy所以 Im()Re()ww.故(1i)wz 将 Im()0,z映成 Im()Re()ww.(2)Re(z)0.0Im(z)0,0y0.Im(w)0.若w=u+iv,则2222,uvyxuvuv因为 0y0,0Im(z)0,Im(w)0,1212w (以(12,0)为圆心、12为半径的圆)-第 1 页,共 7 页精品p d f 资料 可编辑资料-精品资料欢迎下载3.求w=z2在z=i 处的伸缩率和旋转角,问w=z2将经过点z=i 且平行于实轴正向的曲线的切线方向映成w平面上哪一个方向?并作图.解:因为 w=2z,所以 w(i)=2i,|w|=2,旋转角 arg w=2.于是,经过点 i 且平行实轴正向的向量映成w平面上过点-1,且方向垂直向上的向量.如图所示.4.一个解析函数,所构成的映射在什么条件下具有伸缩率和旋转角的不变性?映射w=z2在z平面上每一点都具有这个性质吗?答:一个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w=z2在z=0 处导数为零,所以在z=0处不具备这个性质.5.求将区域0 x0.解:(1)Re(z)=0 是虚轴,即z=iy代入得.22222i1(1i)12ii1111yyyywyyyy写成参数方程为2211yuy,221yvy,y.消去y得,像曲线方程为单位圆,即u2+v2=1.(2)|z|=2.是一圆围,令i2e,02z.代入得ii2e12e1w化为参数方程.354cosu4sin54cosu02消去得,像曲线方程为一阿波罗斯圆.即22254()()33uv(3)当 Im(z)0 时,即11Im()011wwzww,令w=u+iv得221(1)i2Im()Im()01(1)i(1)wuvvwuvuv.即v0,故 Im(z)0 的像为 Im(w)0.9.求出一个将右半平面Re(z)0 映射成单位圆|w|0,映射成|w|0,映为单位圆|w|0).(1)由f(i)=0得=i,又由 arg(i)0f,即i22i()e(i)fzz,i()21(i)e02f,得2,所以iiizwz.(2)由f(1)=1,得k=11;由f(i)=15,得k=i5(i)联立解得3+(52i)(52i)3zwz.12.求将|z|1 映射成|w|1 的分式线性变换w=f(z),并满足条件:(1)f(12)=0,f(-1)=1.(2)f(12)=0,12arg()2f,(3)f(a)=a,arg()fa.解:将单位圆|z|1 映成单位圆|w|1 的分式线性映射,为ie1zwz ,|1.(1)由f(12)=0,知12.又由f(-1)=1,知1iii2121ee(1)1e11.故12221112zzzwz.-第 4 页,共 7 页精品p d f 资料 可编辑资料-文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5精品资料欢迎下载(2)由f(12)=0,知12,又i254e(2)zwzi11224()earg()32ff,于是21i2221e()i12zzzwz.(3)先求=()z,使z=a0,arg()a,且|z|1 映成|1.则可知i=()=e1zaza z再求w=g(),使=0w=a,arg(0)0g,且|1 映成|w|1.先求其反函数=()w,它使|w|1 映为|1,w=a映为=0,且arg()arg(1/(0)0wg,则=()=1wawa w.因此,所求w由等式给出.i=e11wazaa wa z.13.求将顶点在0,1,i 的三角形式的内部映射为顶点依次为0,2,1+i 的三角形的内部的分式线性映射.解:直接用交比不变性公式即可求得02ww1i01i2=02zzi0i12ww.1i21i=1zz.i1i4z(i1)(1i)wz.14.求出将圆环域2|z|5 映射为圆环域4|w|2 映为|w|10.又w=f(z)将|z|=5 映为|w|=4,将z=2映为w=-10,所以将|z|4,由此确认,此函数合乎要求.15.映射2wz将z平面上的曲线221124xy映射到w平面上的什么曲线?解:略.16.映射w=ez将下列区域映为什么图形.(1)直线网 Re(z)=C1,Im(z)=C2;(2)带形区域Im(),02z;(3)半带形区域Re()0,0Im(),02zz.解:(1)令z=x+iy,Re(z)=C1,z=C1+iy1i=eeCyw,Im(z)=C2,则z=x+iC22i=eeCxw故=ezw将直线 Re(z)映成圆周1eC;直线 Im(z)=C2映为射线2C.(2)令z=x+iy,y,则ii=eeee,zxyxywy故=ezw将带形区域Im()z映为arg()w的张角为的角形区域.(3)令z=x+iy,x0,0y0,0Im(z)1,0arg w(02).17.求将单位圆的外部|z|1 保形映射为全平面除去线段-1Re(w)1 映为|w1|1,再用分式线性映射.1211i1www将|w1|0,然后用幂函数232ww映为有割痕为正实轴的全平面,最后用分式线性映射3311www将区域映为有割痕-1,1的全平面.-第 6 页,共 7 页精品p d f 资料 可编辑资料-文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5精品资料欢迎下载故221121132222132111111i1111111()11211i1111zzzzwwwwwzwwzww.18.求出将割去负实轴Re()0z,Im(z)=0 的带形区域Im()22z映射为半带形区域 Im()w,Re(w)0 的映射.解:用1ezw将区域映为有割痕(0,1)的右半平面Re(w1)0;再用1211ln1www将半平面映为有割痕(-,-1的单位圆外域;又用32iww将区域映为去上半单位圆内部的上半平面;再用43lnww将区域映为半带形0Im(w4)0;最后用42iww映为所求区域,故e1lne1zzw.19.求将 Im(z)1 去掉单位圆|z|0 的映射.解:略.20.映射coswz将半带形区域0Re(z)0 保形映射为平面上的什么区域.解:因为1cos()2izizwzee可以分解为w1=iz,12eww,32211()2www由于coswz在所给区域单叶解析,所以(1)w1=iz将半带域旋转2,映为 0Im(w1),Re(w1)0.(2)12eww将区域映为单位圆的上半圆内部|w2|0.(3)2211()2www将区域映为下半平面Im(w)0.-第 7 页,共 7 页精品p d f 资料 可编辑资料-文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5文档编码:CG5K2J3P2E3 HK3X4G5S3X4 ZO8C7C4A10P5

    注意事项

    本文(复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1).pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开