最新应用多元统计分析课后习题答案高惠璇第二章部分习题解答PPT课件.ppt
应用多元统计分析课后习题应用多元统计分析课后习题答案高惠璇第二章部分习题答案高惠璇第二章部分习题解答解答 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计 2-1 设设3维随机向量维随机向量XN3(,2I3),已知,已知试求试求Y=AX+d的分布的分布.解解:利用性质利用性质2,即得二维随机向量即得二维随机向量YN2(y,y),其中:其中:2 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计2-11 已知已知X=(X1,X2)的密度函数为的密度函数为试求试求X的均值和协方差阵的均值和协方差阵.解一解一:求边缘分布及求边缘分布及Cov(X1,X2)=129 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计类似地有类似地有10 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计011 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计所以所以故故X=(X1,X2)为二元正态分布为二元正态分布.12 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计解二解二:比较系数法比较系数法 设设比较上下式相应的系数比较上下式相应的系数,可得可得:13 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计故故X=(X1,X2)为二元正态随机向量为二元正态随机向量.且且解三解三:两次配方法两次配方法 14 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计即即设函数设函数 是随机向量是随机向量Y的密度函数的密度函数.15 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计 (4)由于由于故故(3)随机向量随机向量16 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计2-12 设设X1 N(0,1),令令(1)证明证明X2 N(0,1);(2)证明证明(X1,X2)不是二元正态分布不是二元正态分布.证明证明(1):任给任给x,当当x-1时时当当x1时时,17 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计当当-1x1时时,(2)考虑随机变量考虑随机变量Y=X1-X2,显然有显然有18 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计 若若(X1,X2)是二元正态分布是二元正态分布,则由性质则由性质4可知可知,它的任意线性组合必为一元正态它的任意线性组合必为一元正态.但但Y=X1-X2 不是正态分布不是正态分布,故故(X1,X2)不是二元正态分布不是二元正态分布.19 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计2-17 2-17 设设XNp(,),(,),0,0,X的密度函数记为的密度函数记为f(x;,).(1);,).(1)任给任给a0,0,试证明概率密度等高面试证明概率密度等高面 f(x;,)=;,)=a是一个椭球面是一个椭球面.(2)(2)当当p=2=2且且 (0)0)时,时,概率密度等高面就是平面上的一个椭圆,试求该椭圆概率密度等高面就是平面上的一个椭圆,试求该椭圆的方程式,长轴和短轴的方程式,长轴和短轴.证明证明(1):任给任给a0,0,记记20 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计令令 ,则概率密度等高面为则概率密度等高面为(见附录见附录5 P390)21 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计故概率密度等高面故概率密度等高面 f(x;,)=a是一个椭球面是一个椭球面.(2)当当p=2=2且且 (0)0)时时,由由可得可得的特征值的特征值22 第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计i(i=1,2)对应的特征向量为对应的特征向量为由由(1)可得椭圆方程为可得椭圆方程为长轴半径为长轴半径为 方向沿着方向沿着l1方向方向(b0);短轴半径为短轴半径为 方向沿着方向沿着l2方向方向.23第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计 2-19 为了了解某种橡胶的性能,今抽了十个样品,每为了了解某种橡胶的性能,今抽了十个样品,每个测量了三项指标:个测量了三项指标:硬度、变形和弹性,其数据见表。硬度、变形和弹性,其数据见表。试计算样本均值,样本离差阵,样本协差阵和样本相试计算样本均值,样本离差阵,样本协差阵和样本相关阵关阵.解:解:24第二章第二章 多元正态分布及参数的估计多元正态分布及参数的估计25