两个基本计数原理教案.doc
第一章 计数原理第1节 两个基本计数原理教材分析 本节课分类计数原理与分步计数原理是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法.学情分析高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强.目标分析知识与技能掌握分类计数原理与分步计数原理的内容能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题 过程与方法 通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣.教学重难点分析教学重点:分类计数原理与分步计数原理的掌握教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题 教法、学法分析教法分析:启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识.教学过程一、创设情境:对于分类计数原理设计如下情境(看多媒体):该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是:第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫.第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法?设计的意图是让学生更清楚的认识到总方法数是各类方法数之和.第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律?接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.第四步由教师板书分类计数原理(加法原理)并说明由于总方法数是各类方法数之和,树立学生平时学习生活中的讲道理意识.在分类计数原理中设计如下问题情境,问题2与问题1的背景一样:都是乘车方法的计数问题.对于问题2的处理办法是:第一步由学生自主尝试分析解答,但该问题并没有问题1般简单所以就有了第二步教师电脑屏幕显示分析及解题过程,利用多媒体显示动画,辅助分析,展示不同的走法,帮助学生更直观的解决问题,然后由感性进入理性,这也符合一般的认知规律.第三步问题引申将问题引申为若从兰州到天水新增一辆4号汽车,则有多少种乘车方法?设计的意图是:通过引申让学生更加清楚的认识到总方法数是各步方法数相乘.第四步提出问题:你能否对照分类计数原理,归纳概括出问题2蕴含的计数规律,并尝试命名,这样设计一可指导学生通过类比给出分步计数原理,渗透类比思想第二也可在自主探究中掌握本节重点,当然重点的突破也为难点突破打下了知识基础第五部教师板书:分步计数原理(乘法原理),由学生说明其称为乘法原理的理由.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事有N=m1×m2××mn种不同的方法. 二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点.探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力.探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成” 由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”. 探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结.探究结果:若完成一件事情有n类方法,则用分类计数原理.若完成一件事情有n个步骤,则用分步计数原理.设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力.探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结.探究结果:1、明确要完成什么事 2、判断分类还是分步 3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1 +m2 +mn种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法做第n步骤有mn种不同的方法,那么完成这件事共有N=m1×m2 ××mn种不同的方法.(二)例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步 配一个荤菜 有3种选择 第二步 配一个素菜 有5种选择 第三步 配一个汤 有2种选择共有N=3×5×2=30(种)例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类 从上层取一本书 有5种选择 第二类 从下层取一本书 有4种选择共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算.解:属于分步:第一步 从上层取一本书 有5种选择 第二步 从下层取一本书 有4种选择 共有N=5×4=20(种)例3、 有1、2、3、4、5五个数字.(1)可以组成多少个不同的三位数?(2)可以组成多少个无重复数字的三位数?(3)可以组成多少个无重复数字的偶数的三位数?(1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算.略解:N=5×5×5=125(个)(2)(3)(4)师生共同完成(三)巩固练习1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?2、有一个班级共有46名学生,其中男生有21名. (1)现要选派一名学生代表班级参加学校的学代会,有多 少种不同的选派方法? (2)若要选派男、女各一名学生代表班级参加学校的学代 会,有多少种不同的选派方法?思考:有0、1、2、3、4、5六个数字.(1)可以组成多少个不同的三位数?(2)可以组成多少个无重复数字的三位数?(3)可以组成多少个无重复数字的偶数的三位数?(四)课堂总结1、什么时候用加法原理、什么时候用乘法原理呢? 分类时用加法原理,分步时用乘法原理2、分类与分步怎么区别呢? 分类时要求各类办法能独立完成;分步时要求各步不能独立完成分类加法计数原理与分步乘法计数原理异同点的理解:相同点:都是完成一件事的不同方法种数的问题不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.(五)板书设计:两个基本计数原理1、分类计数原理:N=m1 +m2 +mn2、分类计数原理:N=m1×m2 ××mn例1例2小结:(六)及时训练1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?2.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?3.如图一,要给,四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为() A. 180 B. 160 C. 96 D. 60图一图二图三若变为图二,图三呢?5.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种? (七)作业布置1、课本第8页第1、2、3、4、5题; 2、课本第9页第1、2、3、4、5、6、7、8、9题教学反思:分类加法计数原理比较好掌握,分类乘法计数原理不太好理解.有些题不知道是用加法原理还是用乘法原理.例题书上都有,看过书后,教师讲课感觉不到新鲜.还有部分不会做题的学生通过看书也能得到答案,不能反映他们的真实水平.1、学生主体观课堂教学过程是在教学目标的指引下,由师生共同动态“生成”的其中,学生的反馈是重要的,它决定了教学的进程聆听学生是教师的必备技能,不要将学生作为“答案发生器”,不要沉浸在“我的学生都会做了”这种虚假的成功喜悦中,而应该让学生关注解决问题的过程、策略及思想方法,让他们充分地展示思想,完整地、数学地表达自己的想法,甚至于应该给予他们犯错的机会,也帮助他们提高分析错误、更正错误的能力学生在解题时,往往对答案很在意,也很在行例如在问题“集合1,2,3,4,5的二元子集有多少个?”的解决中,学生极快地报出了答案“10”,但在叙述他的解题过程时,却说不太清楚一开始说出了5×4的做法,但很快又自我否定(因为答案不对),当然,他一定觉得用“数”数的方法可以解决,但难以表述这种“两难”处境需要教师的协助来化解,在教师的鼓励下,他用“数”数的方法完成了问题,并对计数的对象二元集进行了分类,利用分类加法计数原理重新阐述了做法,得到了师生的共同认可在这一过程中,不仅是这名学生,而是全体,都体验了不要“轻易言败”的心理历程,这也在一定程度上实现了新课程所倡导的“情感、态度、价值观”的目标2、让学生自我发展如何让学生的主动学习模式从课内延伸到课外?如何让学有余力的同学有更大的收获?学生在课后常会问一些问题,多数是课上未听懂或习题的方法未理解掌握,但也有一些同学就某一问题提出新看法、新解法,对他们而言,一个具备思辨价值的问题是更好的研究素材,例如在本课最后,提出了问题“已知集合M=1,2,3,P=4,5,6以M为定义域,P为值域的不同函数有几个?从M到P不同的映射有多少个?”这个问题需要学生对函数、映射相关知识先做一个回顾,再利用所学的两个基本计数原理加以解决记得当时一下课,有学生上来问我:“是不是9”?我没有回答,而是让他自主验证第二天,他坚定地说,“的答案是6;的答案是9”,我想,他不需要我对他的答案进行认可了,因为他已学会了自我认可这种自我认可的能力,不也是数学课程需要达到的目标么?